Президиум РАНДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

ИССЛЕДОВАНИЕ ТЯГИ КОЛЬЦЕВОГО СОПЛА В ТУРБУЛЕНТНОМ РЕЖИМЕ ИСТЕЧЕНИЯ

Код статьи
S2686740025030089-1
DOI
10.31857/S2686740025030089
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 522 / Номер выпуска 1
Страницы
51-57
Аннотация
Представлены результаты расчетов и измерений силы тяги в условиях турбулентных режимов истечения высокотемпературных продуктов сгорания из кольцевого сопла. Расчеты выполнены на основе осредненных по Фавру уравнений Навье—Стокса и приближения Буссинеска для описания процессов турбулентного переноса. Проведен анализ влияния формы выхлопного сопла кольцевого соплового устройства с внутренним дефлектором на величину развиваемой тяги. По результатам сравнения расчетных значений силы тяги сопла с соответствующими измеренными величинами выполнена валидация расчетной модели. Установлено, что в полости дефлектора устанавливается “стационарный” турбулентный режим течения с высокими значениями параметров турбулентного переноса.
Ключевые слова
модель турбулентности тяга кольцевое (выхлопное) сопло численное исследование измерения
Дата публикации
19.12.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Levin V.A., Afonina N.E., Gromov V.G., Магмулович I.S., Khmelevsky A.N., Markov V.V. Spectra signals of gas pressure pulsations in annular and linear dual slotted nozzles // Combustion Science and Technology. 2019. V. 191. № 2. P. 339–352. https://doi.org/10.1080/00102202.2018.1467405
  2. 2. Olsen M.E., Coakley T.J. The Lag Model, a Turbulence Model for Non Equilibrium Flows // 15th AIAA Computational Fluid Dynamics Conference. 2001. AIAA 2001–2564. https://doi.org/10.2514/6.2001-2564
  3. 3. Wilcox D.C. Multiscale Model for Turbulent Flows // AIAA J. 1988. V. 26. № 11. P. 1311–1320. https://doi.org/10.2514/6.1986-29
  4. 4. Левин В.А., Афонина Н.Е., Громов В.Г., Хмелевский А.Н. Численное исследование течения в кольцевом сопле на основе турбулентной модели // Доклады РАН. Физика, технические науки. 2022. Т. 503. № 1. С. 47–51. https://doi.org/10.31857/S26867400220200801
  5. 5. Favre A. Equations des gaz turbulents compressibles. Pt 1: Formes generals // Journal de Mécanique. 1965. V. 4. № 3. P. 361–390.
  6. 6. Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP Technique for High Temperature Gas Flows Numerical Simulation // Proc. of the 5th European Symposium on Aerothermodynamics for Space Vehicles. Cologne, Germany. 8–11 November 2004. SP-563, February 2005. P. 323–328.
  7. 7. Варнати Ю., Мазс У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ. М.: Физматлит, 2003. 351 с.
  8. 8. Левин В.А., Пережоган В.Н., Хмелевский А.Н. Особенности структуры течения продуктов сгорания в сферической полузамкнутой полости // ФГВ. 1995. Т. 31. № 1. С. 32–40.
  9. 9. Левин В.А., Афонина Н.Е., Громов В.Г., Смехов Г.Д., Хмелевский А.Н., Марков В.В. Газодинамика и тяга выходного устройства реактивного двигателя с кольцевым соплом // ФГВ. 2012. Т. 48. № 4. С. 38–50.
  10. 10. Иров Ю.Д., Кейль Э.В., Маслов Б.Н., Павлухин Ю.А., Породенко В.В., Степанов Е.А. Газодинамические функции. М.: Машиностроение, 1965. 400 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека