RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

The use of invariants for detecting weak signals in the near acoustic illumination zone

PII
S2686740025010019-1
DOI
10.31857/S2686740025010019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
3-9
Abstract
In solving many practically important problems of hydroacoustics, the properties of the fan interference structure of the signal intensity field are used, which in the shallow sea in the coordinates “distance – frequency” are largely determined by the value of the waveguide invariant β (S.D. Chuprov invariant) close to one. Below, the properties of the waveguide invariant are studied in the near acoustic illumination zone (NAIZ) of the deep sea, and it is found that its values are unstable – when the propagation conditions change, the waveguide invariant varies widely and is not an invariant. It is shown that in the NAIZ the use of the phase-energy invariant βef is more promising, since in the NAIZ it is equal to one with high accuracy and stable. It is also discovered for the first time that, under certain conditions, coherent addition of Fourier components on the complex plane is possible in the NAIZ if, when summing the spectral components of complex spectra along the ridges, an adjustment for phase variation is introduced. With such processing, in the case of stationary noise, the probability of detecting weak signals can significantly increase.
Keywords
глубокое море ближняя зона акустической освещенности интерференционная структура акустической интенсивности волноводный инвариант фазо-энергетический инвариант увеличение вероятности обнаружения слабых сигналов
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Чупров С.Д. Акустика океана: современное состояние. М.: Наука, 1982. С. 71–91.
  2. 2. Kevin L., Cockrell K., Schmidt H. Robust passive range estimation using the waveguide invariant // J. Acoust. Soc. Am. 2010. V. 127. № 5. P. 2780.
  3. 3. Kuznetsov G.N., Kuz’kin V.M., Pereselkov S.A. Estimation of the velocity of underwater objects in the passive mode using frequency-shift data // Phys. Wave Phenom. 2014. V. 22. № 4. P. 306–311.
  4. 4. Zhu Q. et al. The waveguide invariant close to the deep-water bottom // Applied acoustics. 2024. V. 217. P. 109870.
  5. 5. Emmetiere R. et al. Understanding deep-water striation patterns and predicting the waveguide invariant as a distribution depending on range and depth // JASA. 2018. V. 143. P. 3444.
  6. 6. Аксенов С.П., Кузнецов Г.Н. Энергетические инварианты в звуковых полях глубокого и мелкого моря // ДАН. 2022. Т. 507. № 1. С. 9–14.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library