RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Modelling of plates made from bimodular material taking into account elastic-plastic deformations

PII
10.31857/S2686740024050073-1
DOI
10.31857/S2686740024050073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
43-50
Abstract
A mathematical model of the stress-strain state of plates made of bimodular material with elastic-plastic deformations according to the deformation theory of plasticity is constructed. The stress-strain state of plates is studied by the variational iterations method or the extended Kantorovich method. The solutions obtained are close to exact. For rectangular plates subjected to a uniformly distributed load, the neutral plane is found to be the interface between the compression and tension zones.
Keywords
бимодульный материал метод вариационных итераций метод переменных параметров упругости нейтральная поверхность
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Bert C.W. Models for fibrous composites with different properties in tension and compression // ASME J. Eng. Mater. Technol. 1977. V. 99. P. 344–349. https://doi.org/10.1115/1.3443550
  2. 2. Ambartsumyan S.A. Elasticity Theory of Different Modulus. Beijing (China): China Railway Publishing House, 1986.
  3. 3. Li X., Sun J.-Y., Dong J., He X.-T. One-dimensional and two-dimensional analytical solutions for functionally graded beams with different moduli in tension and compression // Materials. 2018. V. 11. P. 830. https://doi.org/10.3390/ma11050830
  4. 4. He X.-T., Li W.-M., Sun J.-Y., Wang Z.-X. An elasticity solution of functionally graded beams with different moduli in tension and compression // Mech. Adv. Mater. Struct. 2018. V. 25. P. 143–154. https://doi.org/10.1080/15376494.2016.1255808
  5. 5. He X.-T., Pei X.-X., Sun J.-Y., Zheng Z.-L. Simplified theory and analytical solution for functionally graded thin plates with different moduli in tension and compression // Mech. Res. Commun. 2016. V. 74. P. 72–80. https://doi.org/10.1016/j.mechrescom.2016.04.006
  6. 6. Демьянушко И.В., Биргер И.А. Расчет на прочность вращающихся дисков. М.: Машиностроение, 1978. 247 с.
  7. 7. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М.: Наука, 1986. 560 с.
  8. 8. Ворович И.И., Красовский Ю.П. О методе упругих решений // ДАН СССР. 1959. Т. 126. № 4. С. 740–743.
  9. 9. Kropiowska D., Mikulski L., Szeptyński P. Optimal design of a Kirchhoff-Love plate of variable thickness by application of the minimum principle // Structural and Multidisciplinary Optimization. 2018. V. 59(5). P. 1581–1598. https://doi.org/10.1007/s00158-018-2148-3
  10. 10. Xue X.-Y., Du D.-W., Sun J.-Y., He X.-T. Application of Variational Method to Stability Analysis of Cantilever Vertical Plates with Bimodular Effect // Materials. 2021. V. 14. 6129. https://doi.org/10.3390/ma14206129
  11. 11. Awrejcewicz J., Krysko-Jr. V.A., Kalutsky L.A., et al. Review of the Methods of Transition from Partial to Ordinary Differential Equations: From Macro- to Nano-structural Dynamics // Arch. Computat. Methods Eng. 2021. V. 28. P. 4781–4813. https://doi.org/10.1007/s11831-021-09550-5
  12. 12. Канторович Л.В. О методе Ньютона // Труды МИАН СССР им. В.А. Стеклова. 1949. Т. 28. С. 104–144.
  13. 13. Tebyakin A.D., Kalutsky L.A., Yakovleva T.V., Krysko A.V. Application of Variational Iterations Method for Studying Physically and Geometrically Nonlinear Kirchhoff Nanoplates: A Mathematical Justification // Axioms. 2023. V. 12(4). Р. 355. https://doi.org/10.3390/axioms12040355
  14. 14. Tebyakin A.D., Krysko A.V., Zhigalov M.V., Krysko V.A. Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method) // Izvestiya of Saratov University. Mathematics. Mechanics. Informatic. 2022. V. 22(4). P. 494–505. https://doi.org/10.18500/1816-9791-2022-22-4-494-505
  15. 15. Krysko-jr V.A., Tebyakin A.D., Zhigalov M.V., Krysko V.A., Awrejcewicz J. Mathematical model of physically non-linear Kirchhoff plates: Investigation and analysis of effective computational iterative methods // International Journal of Non-Linear Mechanics. 2023. V. 150. 104346. https://doi.org/10.1016/j.ijnonlinmec.2022.104346
  16. 16. Awrejcewicz J., Krysko V.A. Elastic and thermoelastic problems in nonlinear dynamics of structural members. Applications of the Bubnov–Galerkin and Finite Difference Methods. 2nd ed. Cham: Springer, 2020. XX. 602 p. https://doi.org/10.1007/978-3-030-37663-5
  17. 17. Tamarin Y. Atlas of Stress-Strain Curves. Asm Intl. 2nd ed. 2002. 816 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library