- PII
 - 10.31857/S2686740024040098-1
 - DOI
 - 10.31857/S2686740024040098
 - Publication type
 - Article
 - Status
 - Published
 - Authors
 - Volume/ Edition
 - Volume 517 / Issue number 1
 - Pages
 - 59-64
 - Abstract
 - The spatial motion of a mechanical system consisting of a rigid body and a moving point mass, interacting with each other by means of unspecified internal forces, has been studied. The task is to construct such a trajectory for a point mass, when moving along which a rigid body, under the influence of the force of interaction with this mass, changes its orientation in space according to a known program. It is assumed that there are external forces acting on both objects, specified as functions of time. A system of three first-order ordinary differential equations, resolved with respect to derivatives, is obtained, which allows solving the problem. These relationships can be used to control spacecraft and robotic systems.
 - Keywords
 - переориентация твердого тела подвижная точечная масса пространственное движение
 - Date of publication
 - 15.02.2024
 - Year of publication
 - 2024
 - Number of purchasers
 - 0
 - Views
 - 47
 
References
- 1. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlinear Dyn., 2019. V. 98. N 4. P. 2651–2669.
 - 2. Liu Y., Chernousko F.L., Terry B.S., Chávez J.P. Special issue on self-propelled robots: from theory to applications // Meccanica. 2023. V. 58. P. 317–319.
 - 3. Schmoeckel F., Worn H. Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs) / Proc. Intern. Conference Robotics and Automation. 2001. IEEE, N.Y. P. 3903–3913.
 - 4. Lampert P., Vakebtutu A., Lagrange B., De Lit P., Delchambre A. Design and performances of a one-degree-of-freedom guided nano-actuator // Robot. Comput. Integr. Manuf. 2003. V. 19. N 1/2. P. 89–98.
 - 5. Vartholomeos P., Papadopoulos E. Dynamics, design and simulation of a novel micro-robotic platform employing vibration microactuators // J. Dyn. Syst. Meas. Control. 2006. V. 128. N 1. P. 122–133.
 - 6. Gradetsky V., Solovtsov V., Kniazkov M., Rizzotto G.G., Amato P. Modular design of electromagnetic mechatronic microrobots / Proc. of 6th Intern. Conference Climbing and Walking Robots (CLAWAR). 2003. Catania, Italy. P. 651–658.
 - 7. Черноусько Ф.Л. О движении тела, содержащего подвижную внутреннюю массу // ДАН. 2005. Т. ٤٠٥. № ١. С. 56–60.
 - 8. Bolotnik N.N., Figurina T.Yu., Chernousko F.L. Optimal control of the rectilinear motion of a two-body system in a resistive medium // J. Appl. Math. Mech. 2012. V. 76. N 1. P. 1–14.
 - 9. Li H., Furuta K., Chernousko F.L. Motion generation of the Capsubot using internal force and static friction / Proc. 45th IEEE Conference on Decision and Control. 2006. San Diego, USA. P. 6575–6580.
 - 10. Zimmerman K., Zeidis I., Bolotnik N., Pivovarov M. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane // Multibody Syst. Dyn. 2009. V. 22. N 2. P. 199–219.
 - 11. Chernousko F.L. Two-dimensional motions of a body containing internal moving masses // Meccanica. 2016. V. 51, N 12. P. 3203–3209.
 - 12. Черноусько Ф.Л. Оптимальное управление движением двухмассовой системы // ДАН. ٢٠١٨. Т. 480. № 5. С. 528–532.
 - 13. Шматков А.М. Поворот тела за кратчайшее время перемещением точечной массы // ДАН. 2018. Т. 481. № 5. С. 498–502.
 - 14. Bolotnik N., Figurina T. Controllabilty of a two-body crawling system on an inclined plane // Meccanica. 2023. V. 58. P. 321–336.
 - 15. Figurina T., Knyazkov D. Periodic regimes of motion of capsule system on rough plane // Meccanica. 2023. V. 58. P. 493–507.
 - 16. Chernousko F.L. Controlling the orientation of a solid using the internal mass // J. Appl. Mech. Tech. Phys. 2019. V. 60. N 2. P. 278–283.
 - 17. Naumov N.Yu., Chernousko F.L. Reorientation of a rigid body controlled by a movable internal mass // J. Comput. Syst. Sci. Int. 2019. V. 58. N 2. P. 252–259.
 - 18. Chernousko F. Reorientation of a rigid body by means of auxiliary masses // Meccanica. 2023. V. 58. P. 387–395.
 - 19. Shmatkov A.M. Objects changing the spatial orientation of a solid body by using mobile mass // J. Comput. Syst. Sci. Int. 2020. V. 59. N 4. P. 622–629.
 - 20. Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наук. думка, 1984. 187 с.
 - 21. Shmatkov A.M. Changing the spatial orientation of a rigid body using one moving mass in the presence of external forces // Meccanica. 2023. V. 58. P. 441–450.
 - 22. Маркеев А.П. Теоретическая механика. М.: ЧеРо, 1999. 572 с.
 - 23. Журавлев В.Ф. Основы теоретической механики. М.: Физматлит, 2008. 304 с.