RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Removal of the stress field singularity for the Williams problem (1952) basing on a non-Euclidean continuum model

PII
10.31857/S2686740024040037-1
DOI
10.31857/S2686740024040037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
12-17
Abstract
A singular solution for the elastic stress field in the Williams problem on the equilibrium of plates with corner cutouts is considered. A scheme has been constructed for the minimal expansion of the classical elastic continuum model without taking into account the Saint-Venant compatibility conditions for deformations, which leads to a non-Euclidean continuum model. Within this model framework, the total stress field is shown to contain no singularity for all cutout angles.
Keywords
сингулярные поля напряжений функция напряжений Эйри асимптотический метод Вилльямса неевклидова модель
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Williams M.L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension // J. Applied Mechanics. 1952. V. 19 (4). P. 526–528. https://authors.library.caltech.edu/records/2zph7-ee089
  2. 2. Barber J.R. Wedge Problems. In Elasticity. Part of the book series: Solid Mechanics and Its Applications. V. 172. Dordrecht: Springer, 2010. P. 149–170. https://doi.org/10.1007/978-90-481-3809-8_11
  3. 3. Pan W., Cheng C., Wang F., Hu Z., Li J. Determination of singular and higher order non-singular stress for angularly heterogeneous material notch 292 // Engineering Fracture Mechanics. 2023. 109592. https://doi.org/10.1016/j.engfracmech.2023.109592
  4. 4. Sinclair G.B. Stress Singularities in Classical Elasticity—I: Removal, Interpretation and Analysis // Applied Mechanics Reviews. 2004. V. 57(4). P. 251–297. http://dx.doi.org/10.1115/1.1762503
  5. 5. Мясников В.П., Гузев М.А. Геометрическая модель внутренних самоуравновешенных напряжений в твердых телах // ДАН. 2001. Т. 380. № 5. С. 627-629.
  6. 6. Годунов С.К., Роменский Е. И. Элементы механики сплошных сред и законы сохранения. Новосибирск: Научная книга, ١٩٩٨. 280 c.
  7. 7. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005. 584 с.
  8. 8. Гузев М.А. Структура кинематического и силового поля в Римановой модели сплошной среды // ПМТФ. 2011. Т. 52. № 5. С. 39–48.
  9. 9. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library