RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

On the generation of frequency combs based on mechanical vibrations of 2D material nanosheets

PII
10.31857/S2686740024030086-1
DOI
10.31857/S2686740024030086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 516 / Issue number 1
Pages
51-58
Abstract
We study the nonlinear dynamics of a rectangular atomically thin nanostrip under conditions of internal combinational resonance between two transverse and one longitudinal modes of mechanical vibrations. Conditions have been analytically found for the initial pretension of the layer required to realize resonance between eigenforms with given indices of variability along the length. It is shown that under conditions of internal resonance, a nonlinear mode of free oscillations is excited in the system, the spectrum of which has the form of a frequency comb. Two qualitatively different types of oscillations of this kind are identified – those caused by the initial excitation in the working longitudinal form of oscillations and in two transverse forms. A significant dependence of the spectral composition of the generated frequency combs on the relationships between the amplitudes of the initial disturbance for the three interacting modes and on the value of the internal frequency detuning parameter of the system is shown.
Keywords
наноэлектромеханические системы НЭМС нелинейная динамика двумерные материалы нанослой лазерное термо-оптическое воздействие фононные частотные гребенки
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Xiao X., Li C., Fan S.-C., Liu Y.-J., Liu Y. Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sensors and Actuators B.: Chemical, 2023. 374, 132851. https://doi.org/10.1016/j.snb.2022.132851
  2. 2. Roslon I., Steeneken P.G., Alijani F., Roslon I.E., Japaridze A., Naarden L., Smeets L., Dekker C., van Belkum A., Alijani F. Prospects and Challenges for Graphene Drums as Sensors of Individual Bacteria. 2023. https://doi.org/10.1101/2023.11.20.567863
  3. 3. Xu B., Zhang P., Zhu J., Liu Z., Eichler A., Zheng X.Q., Lee J., Dash A., More S., Wu S., Wang Y., Jia H., Naik A., Bachtold A., Yang R., Feng P. X. L., Wang Z. Nanomechanical Resonators: Toward Atomic Scale // ACS Nano. 2022. V. 16, Iss. 10. P. 15545–15585. American Chemical Society. https://doi.org/10.1021/acsnano.2c01673
  4. 4. Sajadi B., van Hemert S., Arash B., Belardinelli P., Steeneken P.G., Alijani F. Size- and temperature-dependent bending rigidity of graphene using modal analysis // Carbon. 2018. V. 139. P. 334–341. https://doi.org/10.1016/j.carbon.2018.06.066
  5. 5. Ferrari P.F., Kim S.P., van der Zande A.M. Nanoelectromechanical systems from two-dimensional materials // Appl. Physics Reviews. 2023. V. 10. Iss. 3. American Institute of Physics Inc. https://doi.org/10.1063/5.0106731
  6. 6. Steeneken P.G., Dolleman R.J., Davidovikj D., Alijani F., van der Zant H.S.J. Dynamics of 2D material membranes // 2D Materials. 2021. V. 8. Iss. 4. IOP Publishing Ltd. https://doi.org/10.1088/2053-1583/ac152c
  7. 7. Cupertino A., Shin D., Guo L., Steeneken P.G., Bessa M.A., Norte R.A. Centimeter-scale nanomechanical resonators with low dissipation. 2023. http://arxiv.org/abs/2308.00611
  8. 8. Dolleman R.J., Houri S., Chandrashekar A., Alijani F., van der Zant H.S.J., Steeneken P.G. Opto-thermally excited multimode parametric resonance in graphene membranes // Scientific Reports, 2018. 8(1). https://doi.org/10.1038/s41598-018-27561-4
  9. 9. Yang F., Rochau F., Huber J.S., Brieussel A., Rastelli G., Weig E.M., Scheer E. Spatial Modulation of Nonlinear Flexural Vibrations of Membrane Resonators // Physical Review Letters. 2019. V. 122(15). https://doi.org/10.1103/PhysRevLett.122.154301
  10. 10. Zega V., Nitzan S., Li M., Ahn C.H., Ng E., Hong V., Yang Y., Kenny T., Corigliano A., Horsley D.A. Predicting the closed-loop stability and oscillation amplitude of nonlinear parametrically amplified oscillators // Appl. Physics Letters. 2015. V. 106(23). https://doi.org/10.1063/1.4922533
  11. 11. Keşkekler A., Shoshani O., Lee M., van der Zant H.S.J., Steeneken P.G., Alijani F. Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance // Nature Communications. 2021. V. 12(1). https://doi.org/10.1038/s41467-021-21334-w
  12. 12. Lee J., Shaw S.W., Feng P.X.L. Giant parametric amplification and spectral narrowing in atomically thin MoS2 nanomechanical resonators // Appl. Physics Reviews. 2022. V. 9(1). https://doi.org/10.1063/5.0045106
  13. 13. Liu C.H., Kim I.S., Lauhon L.J. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime // Nano Letters. 2015. V. 15(10). P. 6727–6731. https://doi.org/10.1021/acs.nanolett.5b02586
  14. 14. Keskekler A., Bos V., Aragón A.M., Steeneken P.G., Alijani F. Characterizing multi-mode nonlinear dynamics of nanomechanical resonators. 2023. http://arxiv.org/abs/2304.01419
  15. 15. Wang M., Perez-Morelo D.J., Lopez D., Aksyuk V.A. Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators // Physical Review X. 2022. V. 12(4). https://doi.org/10.1103/PhysRevX.12.041025
  16. 16. de Jong M.H.J., Cupertino A., Shin D., Gröblacher S., Alijani F., Steeneken P.G., Norte R.A. Beating Ringdowns of Near-Degenerate Mechanical Resonances // Physical Review Applied. 2023. V. 20(2), 024053. https://doi.org/10.1103/PhysRevApplied.20.024053
  17. 17. Wei X., Zhang T., Jiang Z., Ren J., Huan R. Frequency latching in nonlinear micromechanical resonators // Appl. Physics Letters. 2017. 110(14). https://doi.org/10.1063/1.4979829
  18. 18. Gajo K., Rastelli G., Weig E.M. Tuning the nonlinear dispersive coupling of nanomechanical string resonators // Phys. Review B, 2020. V. 101(7). https://doi.org/10.1103/PhysRevB.101.075420
  19. 19. Ganesan A., Do C., Seshia A. Phononic Frequency Comb via Intrinsic Three-Wave Mixing. Physical Review Letters, (2017). 118(3). https://doi.org/10.1103/PhysRevLett.118.033903
  20. 20. Udem T., Holzwarth R., Hansch T.W. Optical frequency metrology // Nature. 2002. 416(6877). https://doi.org/10.1038/416233a. PMID: 11894107
  21. 21. Kolachevsky N.N., Khabarova K.Yu., Zalivako I.V., Semerikov I.A., Borisenko A.S., Sherstov I.V., Bagaev S.N., Lugovoy A.A., Prudnikov О.N., Taichenachev A.V., Chepurov S.V. Prospective Quantum-Optical Technologies for Satellite Navigation Challenges // Rocket-Space Device Engineering and Information Systems. 2018. V. 5(1). P. 13–27. https://doi.org/10.30894/issn2409-0239.2018.5.1.13.27
  22. 22. Mantsevich S.N., Kostyleva E.I., Danilin A.N., Khorkin V.S. Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser // Frontiers of Optoelectronics. 2023. 16(1). https://doi.org/10.1007/s12200-023-00079-y
  23. 23. Lee J., Shaw S.W., Feng P.X.L. Phononic Frequency Comb Generation via 1:1 Mode Coupling in MoS2 2D Nanoelectromechanical Resonators // Proc. IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2022. January. P. 503–506. https://doi.org/10.1109/MEMS51670.2022.9699651
  24. 24. Sun J., Yu S., Zhang H., Chen D., Zhou X., Zhao C., Gerrard D.D., Kwon R., Vukasin G., Xiao D., Kenny T.W., Wu X., Seshia A. Generation and Evolution of Phononic Frequency Combs via Coherent Energy Transfer between Mechanical Modes // Phys. Review Applied. 2023. 19(1). https://doi.org/10.1103/PhysRevApplied.19.014031
  25. 25. Ganesan A., Seshia A. Resonance tracking in a micromechanical device using phononic frequency combs // Scientific Reports. 2019. 9(1). https://doi.org/10.1038/s41598-019-46003-3
  26. 26. Zhang T., Seshia A.AA MEMS Frequency Comb Energy Harvester // J. Microelectromechanical Systems. 2023. https://doi.org/10.1109/JMEMS.2023.3316436
  27. 27. Morozov N.F., Indeitsev D.A., Lukin A.V., Popov I.A., Shtukin L.V. Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS // J. Sound and Vibration. 2021. 509. https://doi.org/10.1016/j.jsv.2021.116247
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library