RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Development of a new more precise algorithm for computing tidal Love numbers

PII
10.31857/S2686740024010117-1
DOI
10.31857/S2686740024010117
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
70-77
Abstract
Tidal Love numbers are often used for studying the interior structure of planets and satellites of the Solar System. Measuring the deformation in response to tidal loading belongs to the methods for probing the interiors. The algorithm for computing tidal deformation depends on a series of assumptions and approximations and, therefore, can differ according to different authors. In this paper we compare the existing methods and, based on them, we propose a new and more precise algorithm for computing the tidal Love numbers of the Earth and other bodies with a similar interior structure.
Keywords
алгоритм приливные числа Лява полусуточный лунный прилив Земля планеты
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Love A.E.H. The yielding of the Earth to disturbing forces // Proc. Тhe Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character. 1909. 82.551. P. 73–88.
  2. 2. Amorim D.O., Гудкова Т.В. Внутреннее строение Венеры на основе модели PREM // Астрон. вестн. 2023. Т. 57(5). С. 403–414.
  3. 3. Dumoulin C., Tobie G., Verhoeven O., et al.Tidal constraints on the interior of Venus // J. Geophysical Research: Planets. 2017. V. 122(6). P. 1338–1352.
  4. 4. Steinbrugge G., Padovan S., Hussmann H., et al. Viscoelastic tides of Mercury and the determination of its inner core size // J. Geophysical Research: Planets. 2018. V. 123(10). P. 2760–2772.
  5. 5. Bagheri A., Khan A., Al-Attar D., et al. Tidal response of mars constrained from laboratory-based viscoelastic dissipation models and geophysical data // J. Geophysical Research: Planets. 2019. V. 124(11). P. 2703–2727.
  6. 6. Alterman Z., Hans Jarosch, Pekeris C.L. Oscillations of the Earth. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1959. 252.1268. P. 80–95.
  7. 7. Chinnery M.A. The static deformation of an earth with a fluid core: a physical approach // Geophysical J. Intern. 1975. V. 42. № 2. P. 461–475.
  8. 8. Longman I.M. A Green’s function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results // J. Geophysical Research. 1963. V. 68. № 2. P. 485–496.
  9. 9. Saito M. Some problems of static deformation of the Earth // J. Physics of the Earth. 1974. V. 22(1). P. 123–140.
  10. 10. Helffrich G., Satoshi Kaneshima. Outer-core compositional stratification from observed core wave speed profiles // Nature. 2010. № 468. P. 807–810.
  11. 11. Michel A., Jean-Paul Boy. Viscoelastic Love numbers and long-period geophysical effects // Geophysical J. International. 2022. V. 228. № 2. P. 1191–1212.
  12. 12. Virtanen P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python // Nature methods. 2020. V. 17. № 3. P. 261–272.
  13. 13. Petit Gerard, Brian Luzum. IERS technical note No. 36, IERS conventions (2010) / International Earth Rotation and Reference Systems Service: Frankfurt, Germany, 2010.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library