RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Self-oscillating mode in an anomalous thermoviscous liquid flow

PII
10.31857/S2686740024010101-1
DOI
10.31857/S2686740024010101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
63-69
Abstract
It is known that the flow of liquids with a nonmonotonic dependence of viscosity on temperature (abnormally thermoviscous liquids) in the presence of temperature gradients, for example, when a heated liquid flows into a cooled channel, is accompanied by the formation of a high-viscosity region localized in the flow, which determines the features of its flow. In this paper, the conditions for the occurrence of self-oscillating regimes of flow rate variation during the flow of anomalously thermoviscous liquids in annular channels under the action of a constant pressure drop and under given conditions of heat transfer on the inner and outer walls of the annular channel are determined. It has been found that self-oscillations in the flow rate of an anomalously thermoviscous liquid can occur when flowing in an annular channel, on the walls of which there is an abrupt decrease in the intensity of heat transfer. The region of existence of the self-oscillation mode is determined by the values of the pressure drop and the geometric parameter equal to the ratio of the width of the annular gap to the radius of the inner cylinder. In addition, weakly damped flow rate oscillations with a very small damping decrement were also observed at the boundaries of this region.
Keywords
аномально термовязкая жидкость кольцевой канал автоколебания расход
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Bacon R.F., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc. 1943. V. 65. P. 639–648. https://doi.org/10.1021/ja01244a043
  2. 2. Tabachnikova E.D., Bengus V.Z., Egorov D.V. et al. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching // Mater. Sci. Eng. A. 1997. V. 226–228. P. 887–890. https://doi.org/10.1016/S0921-5093 (97)80093-7
  3. 3. Алтунина Л.К., Кувшинов В.А., Кувшинов И.В. и др. Увеличение нефтеотдачи пермо-карбоновой залежи высоковязкой нефти Усинского месторождения физико-химическими и комплексными технологиями (обзор) // Журнал СФУ. Химия. 2018. Т. 11. № 3. С. 462–476.
  4. 4. Jin K., Barde A., Nithyanandam K. et al. Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems // Applied Energy. 2019. V. 240. P. 870–881. https://doi.org/10.1016/j.apenergy.2019.02.077
  5. 5. Урманчеев С.Ф., Киреев В.Н. Установившееся течение жидкости с температурной аномалией вязкости // ДАН. 2004. Т. 396. № 2. С. 204–207.
  6. 6. Киреев В.Н., Мухутдинова А.А., Урманчеев С.Ф. О критических условиях теплообмена при течении жидкости с немонотонной зависимостью вязкости от температуры в кольцевом канале // ПММ. 2023. Т. 87. № 3. С. 369–378.
  7. 7. Мелких А.В., Селезнев В.Д. Автоколебания неизотермического течения вязкой жидкости в канале // ТВТ. 2008. Т. 46. № 1. С. 100–109.
  8. 8. Мельник О.Э. Нестационарная модель динамики вулканического извержения с учетом кристаллизации и фильтрации газа через магму // ДАН. 2001. Т. 377. № 5. С. 629–633.
  9. 9. Мельник О.Э., Афанасьев А.А., Зарин Г.А. Дегазация магмы при подъеме по каналу вулкана, пересекающему водонасыщенные породы // ДАН. 2016. Т. 468. № 4. С. 162–165.
  10. 10. Ланда П.С. Нелинейные колебания и волны. М.: Физматлит, 1997. 496 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library