RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Ice rheology exploration based on numerical simulation of low-speed impact

PII
10.31857/S2686740024010033-1
DOI
10.31857/S2686740024010033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
20-28
Abstract
Ice is a complex heterogeneous medium. Its behavior depends on many factors and changes in different processes. Thus, the problem of the determination of the correct rheological model is still unsolved. In this work low-speed impact on ice by the ball striker is considered. The main focus of the research is the development of the method of the correct model selection based on the computer simulation of the laboratory experiment. The simulation was conducted using the following rheology models: isotropic linear elasticity model, elastoplasticity model with the von Mises and the von Mises-Schleicher yield criteria, elasticity model with elastoplastic inclusion. The governing system of equations is solved using grid-characteristic method. Models’ comparison is performed based on the ball’s velocity and depth of ball’s immersion into the ice. The model parameters’ influence on the results is surveyed. As a result, the parameters that reconstruct the solution close to the experimental results are chosen.
Keywords
реология льда математическое моделирование сеточно-характеристический метод упругопластичность
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Staroszczyk R. Formation and Types of Natural Ice Masses / In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. 2018. P. 7–19. http://dx.doi.org/10.1007/978-3-030-03038-4_2
  2. 2. Maurel A, Lund F, Montagnat M. Propagation of elastic waves through textured polycrystals: application to ice // Proc. Math. Phys Eng. Sci. 2015. V. 71. № 2177. 20140988. https://doi.org/10.1098/rspa.2014.0988
  3. 3. Muguruma J. Effects of surface condition on the mechanical properties of ice crystal // J. Physics D: Applied Physics. 1969. V. 2. № 11. P. 1517–1525. https://www.doi.org/10.1088/0022-3727/2/11/305
  4. 4. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  5. 5. Sinha N.H. Elasticity of natural types of polycrystalline ice // Cold Regions Science and Technology. 1989. V. 17. № 2. P. 127–135. http://dx.doi.org/10.1016/S0165-232X (89)80003-5
  6. 6. Neumeier J.J. Elastic Constants, Bulk Modulus, and Compressibility of H2O Ice Ih for the Temperature Range 50 K–273 K // J. Phys. Chem. Ref. Data. 2018. V. 47. № 3. 033101. http://dx.doi.org/10.1063/1.5030640
  7. 7. Langleben M.P. Youngs modulus for sea ice // Canadian Journal of Physics. 1962. V. 40. № 1. P. 1–8. http://dx.doi.org/10.1139/p62-001
  8. 8. Frankenstein G., Garner R. Equations for Determining the Brine Volume of Sea Ice from −0.5° to −22.9 °C // J. Glaciology. 1967. V. 6. № 48. P. 943–944. https://doi.org/10.3189/S0022143000020244
  9. 9. Timco G.W., Weeks W.F. A review of the engineering properties of sea ice // Cold Regions Science and Technology. 2010. V. 60. № 2. P. 107–129. http://dx.doi.org/10.1016/j.coldregions.2009.10.003
  10. 10. Schulson E.M. Brittle failure of ice // Engineering Fracture Mechanics. 2001. V. 68. № 17–18. P. 1839–1887. http://dx.doi.org/10.1016/S0013-7944 (01)00037-6
  11. 11. Ince S. T., Kumar A., Paik J. K. A new constitutive equation on ice materials // Ships and Offshore Structures. 2017. V. 12. № 5. P. 610–623. https://doi.org/10.1080/17445302.2016.1190122
  12. 12. Snyder S.A., Schulson E.M., Renshaw C.E. Effects of prestrain on the ductile-to-brittle transition of ice // Acta Materialia. 2016. V. 108. № 10. P. 110–127. http://dx.doi.org/10.1016/j.actamat.2016.01.062
  13. 13. Jellinek H.H.G., Brill R. Viscoelastic Properties of Ice // J. Applied Physics. 1956. V. 27. № 10. P. 1198–1209. https://doi.org/10.1063/1.1722231
  14. 14. Schulson E.M., Duval P. Ductile behavior of polycrystalline ice: experimental data and physical processes. / In: Creep and Fracture of Ice. 2009. P. 101–152. https://doi.org/10.1017/CBO9780511581397.007
  15. 15. Качанов Л.М. Механика пластических сред. М.: Гостехиздат, 1948. 217 с.
  16. 16. Коврижных А.М. Уравнения плоского напряженного состояния при условии пластичности Мизеса–Шлейхера // Прикладная механика и техническая физика. 2004. Т. 45. № 6. С. 144–153.
  17. 17. Petrov I.B. Grid-characteristic methods. 55 years of developing and solving complex dynamic problems // Computational Mathematics and Information Technologies. 2023. V. 6. № 1. P. 6–21. http://dx.doi.org/10.23947/2587-8999-2023-6-1-6-21
  18. 18. Petrov I.B., Golubev V.I., Ankipovich Y.S., Favorskaya A.V. Numerical Modeling of Acoustic Processes in Gradient Media Using the Grid-Characteristic Method // Dokl. Math. 2022. V. 106. № 3. P. 449–453. http://dx.doi.org/10.1134/S1064562422700090
  19. 19. Kholodov A.S., Kholodov Y.A. Monotonicity criteria for difference schemes designed for hyperbolic equations // Comput. Math. and Math. Phys. 2006. V. 46. № 9. P. 1560–1588. http://dx.doi.org/10.1134/S0965542506090089
  20. 20. Гусева Е.К., Голубев В.И., Петров И.Б. Линейные квазимонотонные и гибридные сеточно-характеристические схемы для численного решения задач линейной акустики // Сиб. журн. вычисл. математики. 2023. Т. 26 № 2. С. 135–147. http://dx.doi.org/10.15372/SJNM20230202
  21. 21. Epifanov V.P. Physical mechanisms of ice contact fracture // Dokl. Phys. 2007. V. 52. № 1. P. 19–23. http://dx.doi.org/10.1134/S1028335807010053
  22. 22. Епифанов В.П., Лычев С.А. Волновые явления при ударе жесткого индентора о лед // Волны и вихри в сложных средах: 13-я международная школа-конференция молодых ученых. Сборник материалов школы. 2022. С. 105–108.
  23. 23. Епифанов В.П. Особенности контактного разрушения льда // Лед и Снег. 2020. Т. 60. № 2. С. 274–284. https://doi.org/10.31857/S2076673420020040
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library