RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

OPTIMIZATION OF THE MOTION OF A BODY WITH AN INTERNAL MASS UNDER QUADRATIC RESISTANCE

PII
10.31857/S2686740023060044-1
DOI
10.31857/S2686740023060044
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
81-87
Abstract
Rectilinear motion of a body controlled by a movable internal mass in a medium with a quadratic resistance is considered. Conditions are obtained that ensure translation of the body with a velocity changing periodically. The average speed of the motion is determined. Conditions that guarantee the maximum average speed are established.
Keywords
динамика оптимизация мобильный робот
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Нагаев Р.Ф., Тамм Е.А. Вибрационное перемещение в среде с квадратичным сопротивлением движению // Машиноведение. 1980. № 4. С. 3–8.
  2. 2. Герасимов С.А. О вибрационном полете симметричной системы // Известия вузов. Машиностроение. 2005. № 8. С. 3–7.
  3. 3. Черноусько Ф.Л. Оптимальные периодические движения двухмассовой системы в сопротивляющейся среде // Прикладная математика и механика. 2008. Т. 72. Вып. 2. С. 202–215.
  4. 4. Егоров А.Г., Захарова О.С. Оптимальное по энергетическим затратам движение виброробота в среде с сопротивлением // Прикладная математика и механика. 2010. Т. 74. Вып. 4. С. 620–632.
  5. 5. Егоров А.Г., Захарова О.С. Оптимальное квазистационарное движение виброробота в вязкой среде // Известия вузов. Математика. 2012. № 2. С. 57–64.
  6. 6. Liu Y., Wiercigroch M., Pavlovskaya E., Yu.Y. Modeling of a vibro-impact capsule system // International Journal of Mechanical Sciences. 2013. V. 66. P. 2–11.
  7. 7. Liu Y., Pavlovskaya E., Hendry D., Wiercigroch M. Optimization of the vibroimpact capsule system // Journal of Mechanical Engineering. 2016. V. 62. P. 430–439.
  8. 8. Fang H.B., Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium // Journal of Sound and Vibration. 2011. V. 330. P. 4002–4018.
  9. 9. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlinear Dynamics. 2019. V. 98. P. 2651–2669.
  10. 10. Tahmasian S., Jafaryzad A., Bulzoni N.L., Staples A.E. Dynamic analysis and design optimization of a drag-based vibratory swimmer // Fluids. 2020. V. 5. № 1. https://doi.org/10.3390/fluids5010038
  11. 11. Tahmasian S. Dynamic analysis and optimal control of a drag-based vibratory systems using averaging // Nonlinear Dynamics. 2021. V. 104. P. 2201–2217.
  12. 12. Черноусько Ф.Л., Болотник Н.Н. Динамика мобильных систем с управляемой конфигурацией. М.: Физматлит, 2022. 464 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library