- PII
 - 10.31857/S2686740023050097-1
 - DOI
 - 10.31857/S2686740023050097
 - Publication type
 - Status
 - Published
 - Authors
 - Volume/ Edition
 - Volume 512 / Issue number 1
 - Pages
 - 73-77
 - Abstract
 - The Fe–0.44%C–1.8%Si–1.3%Mn–0.82%Cr–0.28%Mo steel treated by the quenching-partitioning process showed a product of strength and elongation of 30 GPa·% with yield stress of 1350 MPa. Such combination of high ultimate tensile strength and good ductility is attributed to a high portion of retained austenite (≥20%) transforming to martensite under tension. The high yield stress is provided by carbon supersaturation of austenite and a high dislocation density in this phase.
 - Keywords
 - сталь механические свойства микроструктура остаточный аустенит
 - Date of publication
 - 01.03.2023
 - Year of publication
 - 2023
 - Number of purchasers
 - 0
 - Views
 - 47
 
References
- 1. Fonstein N. Advanced High Strength Sheet Steels. Springer International Publishing, Cham, 2015.
 - 2. Xiong Zh., Jacques P.J., Perlade A., Pardoen Th. // Metallurgical Materials Transaction A. 2019. V. 50. P. 3502–3513. https://doi.org/10.1007/s11661-019-05265-2
 - 3. Speer J., Matlock D.K., De Cooman B.C., Schroth J.G. // Acta Materialia. 2003. V. 51. P. 2611–2622. https://doi.org/10.1016/S1359-6454 (03)00059-4
 - 4. Zhao J., Jiang Z.J. // Progress in Materials Science. 2018. V. 94. P. 174–242. https://doi.org/10.1016/j.pmatsci.2018.01.006
 - 5. Seo E. J., Cho L., Estrin Yu., Cooman Br. C. De // Acta Materialia. 2016. V.113. P. 124–139. https://doi.org/10.1016/j.actamat.2016.04.048
 - 6. Zhang K., Liu P., Li W., Guo Zh., Rong Y. // Materials Science and Engineering: A. 2014. V. 619. P. 205–211. https://doi.org/10.1016/j.msea.2014.09.100
 - 7. An B., Zhang C., Gao G., Gui X., Tan Z., Misra R.D.K., Yang Z. // Materials Science and Engineering: A. 2019. V. 757. P. 117–123. https://doi.org/10.1016/j.msea.2019.04.099
 - 8. Рущиц С.В., Ахмедьянов А.М., Маковецкий А.Н., Красноталов А.О. // Вестник ЮУрГУ. Сер. Металлургия. 2018. Т. 18. № 4. С. 89–97. https://doi.org/10.14529/met180410
 - 9. Soleimani M., Kalhor A., Mirzadeh H. // Materials Science Engineering A. 2020. V. 795. 140023. https://doi.org/10.1016/j.msea.2020.140023
 - 10. Xiong X.C., Chen B., Huang M.X., Wang J.F., Wang L. // Scripta Materialia. 2013. V. 68. P. 321–324. https://doi.org/10.1016/j.scriptamat.2012.11.003
 - 11. Zhilyaev A., Shakhova I., Belyakov A., Kaibyshev R., Langdon Terence G. // Wear. 2013. V. 305. P. 89–99. https://doi.org/10.1016/j.wear.2013.06.001
 - 12. Chen K., Jiang Z., Liu F., Li H., Kang C., Zhang W., Wang A. // Metallurgical and Materials Transactions A. 2020. V. 51. P. 3565–3575. https://doi.org/10.1007/s11661-020-05777-2
 - 13. Kitahara H., Ueji R., Tsuji N., Minamino Y. // Acta Materialia. 2006. V. 54. P. 1279–1288. https://doi.org/10.1016/j.actamat.2005.11.001
 - 14. Odnobokova M., Belyakov A., Enikeev N., Kaibyshev R., Valiev R.Z. // Metals. 2020. V. 1614. https://doi.org/10. 1614. 10.3390/met10121614
 - 15. Gavriljuk V.G., Berns H. High Nitrogen Steels: Structure, Properties, Manufacture, Applications. B., Heidelberg: Springer Berlin Heidelberg, 1999.
 - 16. Malopheyev S., Kulitskiy V., Kaibyshev R. // J. Alloys and Compounds. 2017. V. 698. P. 957–966. https://doi.org/10.1016/j.jallcom.2016.12.289
 - 17. Odnobokova M.V., Belyakov A.N., Dolzhenko P.D., Kostina M.V., Kaibyshev R.O. // Materials Letters. 2023. V. 331. 133502. https://doi.org/10.1016/j.matlet.2022.133502