- PII
- 10.31857/S2686740023010054-1
- DOI
- 10.31857/S2686740023010054
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 509 / Issue number 1
- Pages
- 50-55
- Abstract
- A.M. Polyakov suggested the programme to expand the symmetries admitted by hydrodynamic models to the conformal invariance of statistics in the inverse cascade where the conformal group is infinite-dimensional. In the present work, the group of transformations G of the \(n\)-point probability density function fn (PDF) is presented for the infinite chain of Lundgren–Monin–Novikov equations (the statistical form of the Euler equations) for vorticity fields of the two-dimensional inviscid flow. The problem is written in the Lagrangian setting. The main result is that the group G transforms conformally the zero-vorticity characteristics and invariantly a family of the fn-equations for PDF along these lines. The equations are not invariant along other characteristics. Moreover, the action of G conserves the class of PDF. The results obtained can be used for studying the invariance of statistical properties of the optical turbulence.
- Keywords
- двумерная турбулентность уравнения Лангрена–Монина–Новикова конформная инвариантность линии нулевой завихренности
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Polyakov A.M. The theory of turbulence in two dimensions // Nuclear Phys. B. 1993. V. 396. N. 23. P. 367–385.
- 2. Belavin A.A.,Polyakov A.M., Zamolodchikov A. A. Conformal field theory // Nuclear Phys. B. 1984. V. 241. P. 333–380.
- 3. Bernard D., Boffetta G., Celani A., Falkovich G. Conformal invariance in two-dimensional turbulence // Nature Physics. 2006. V. 2. P. 124–128.
- 4. Bernard D., Boffetta G., Celani A., Falkovich G. Inverse Turbulent Cascades and Conformally Invariant Curves // Phys. Rev. Lett. 2007. V. 98. P. 024501–504.
- 5. Falkovich G. Conformal invariance in hydrodynamic turbulence // Russian Math. Surveys. 2007. V. 63. P. 497–510.
- 6. Lundgren T.S. Distribution functions in the statistical theory of turbulence // Phys. Fluids. 1967. V. 10. P. 969–975.
- 7. Monin A.S. Equations of turbulent motion // Prikl. Mat. Mekh. 1967. V. 31. P. 1057–1068.
- 8. Novikov E.A. Kinetic equations for a vortex field // Sov. Phys. Dokl. V. 12. P. 1006-8.
- 9. Grebenev V.N., Wacławczyk M., Oberlack M. Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence // J. Phys. A: Math. Theor. 2019. V. 50. P. 335501.
- 10. Wacławczyk M., Grebenev V.N., Oberlack M. Conformal invariance of characteristic lines in a class of hydrodynamic models // Symmetry. 2020. V. 12. P. 1482.
- 11. Wacławczyk M., Grebenev V.N., Oberlack M. Conformal invariance of the -point statistics of the zero-isolines of scalar fields in inverse turbulent cascades // Physical Review Fluids. 2021. V. 6. P. 084610.
- 12. Friedrich R., Daitche A., Kamps O., Lülff J., Michel Voßkuhle M., Wilczek M. The Lundgren-Monin-Novikov hierarchy: Kinetic equations for turbulence // C.R. Physique. 2012. V. 13. P. 929–953.
- 13. Madelung E. Quantentheorie in hydrodynamischer form // Zeitschrift für Physik. 1927. V. 40. P. 322–326.
- 14. Bustamante M.D., Nazarenko S.V. Derivation of the Biot–Savart equation from the nonlinear Schrödinger equation // Phys. Rev. E. 2015. V. 92. P. 053019.