- PII
- S3034508125040103-1
- DOI
- 10.7868/S3034508125040103
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 523 / Issue number 1
- Pages
- 63-70
- Abstract
- This paper presents an approach allowing to reduce by up to 30–40 dB and more the low-frequency noise critically affecting human health, functional activity and comfort, as well as the instrument accuracy. This paper considers some methodological aspects and results of designing the composites with a polymer matrix and modifying fillers of inorganic and biopolymer polydisperse phase, the algorithms for predicting and analyzing the efficiency of sound insulation by the criterion of transmission loss when the waves pass through a thin single- or multilayer medium. The validity of the approach is confirmed by correctness of applied physical and chemical methods of the composites synthesis, and experimental data obtained for the models tested in the acoustic duct. The results methods of the research can be used in developing the soundproof structures for aircraft of various purposes, and in microelectronics.
- Keywords
- низкочастотный структурный шум звукоизоляция потери мощности звука полимерные и биополимерные композиты
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 20
References
- 1. Environmental protection. ICAO Standards and Recommended Practices. V. 1. Aircraft noise. 2017.
- 2. Шумовые характеристики пассажирских и грузовых самолетов. 2021. https://ecoprofi.info.
- 3. Prokopenko D. Analysis of noise sources in the cabin of a passenger aircraft and methods for combating them // Proc. Conference “Innovative Technologies for Environmental Science and Energetics” (ITESE‑2024). Čačak, Serbia, September 2–8, 2024. V. 583. 03023.
- 4. Sim C.-S., Sung J.-H., Lee С.-M. et al. The effects of different noise types on heart rate variability in men // Yonsei Medical Journal. 2015. № 1. Р. 235–243.
- 5. Aerospace insulation materials (periodicals). Available: www.custommaterials.com.
- 6. Шульдешов Е.М. Звукоизоляционные свойства авиационных теплоизоляционных материалов // Труды ВИАМ. Полимерные материалы. 2019. № 12 (84). С. 37–45.
- 7. Tao Y., Ren M., Zhang H., Peijs T. Recent progress in acoustic materials and noise control strategies – A review // Applied Materials Today. 2021. № 24. 101141.
- 8. Вешкин Е.А., Сатдинов Р.А., Баранников А.А. Современные материалы для салона самолета // Труды ВИАМ. Электронный научный журнал. 2021. № 9. С. 33–42. https://doi.org/10.18577/2307-6046-2021-0-9-33-42
- 9. Sui N., Yan X., Huang T.-Y. et al. A lightweight yet sound-proof honeycomb acoustic metamaterial // Appl. Phys. Lett. 2015. V. 106. 171905. https://doi.org/10.1063/1.4919235
- 10. Laly Z., Mechefske C., Ghinet S. et al. Modeling of acoustic metamaterial sound insulator using a transfer matrix method for aircraft cabin applications // Proc. Conference “Inter. Noise‑2022”. Glasgow, Scotland, August 21–24, 2022. P. 366–378.
- 11. Leylekian L., Lebrun M., Lempereur P. An overview of aircraft noise reduction technologies // Aerospace Lab. 2014. № 6. Р. 1–15.
- 12. Spakovszky Z.S. Advanced low-noise aircraft configurations and their assessment: past, present, and future // CEAS Aeronautical Journal. 2019. № 10. Р. 137–157.
- 13. Zhu X., Kim B.-J., Wang Q., Wu Q. Recent advances in the sound insulation properties of bio-based materials // Bioresources. 2014. № 9. Р. 1764–1786.
- 14. Sunali, Mago J., Negi A., Fatima S. Sound insulation performance of composites developed using waste carbonaceous materials // Proc. Conference “Inter. Noise‑2022”. Glasgow, Scotland, August 21–24, 2022. P. 4055–4060.
- 15. Физико-химические аспекты предельных состояний и структурных превращений в сплошных средах, материалах и технических системах / Под ред. Ю. В. Петрова. 2-й вып. СПб.: Политехника, 2018. 174 с.
- 16. Polyboyarov V.A., Gorbunov F.K., Voloskova E.V. Modification of the Rubberlike Polymers with the Nanodispersions. Lambert Academic Publishing (Hindawi), 2014.
- 17. Lysenko V., Bardakhanov S., Korchagin A. et al. Possibilities of production of nanopowders with high power ELV electron accelerator // Bulletin of Materials Science. 2011. № 34. Р. 677–681.
- 18. Scien Co., Ltd.: Methods and products. Available: www.scien.co.kr.
- 19. Институт физики микроструктур РАН, Лаборатория рентгеновской оптики. www.xray-optics.ru.