- PII
 - S3034508125030023-1
 - DOI
 - 10.7868/S3034508125030023
 - Publication type
 - Article
 - Status
 - Published
 - Authors
 - Volume/ Edition
 - Volume 522 / Issue number 1
 - Pages
 - 10-15
 - Abstract
 - We consider solenoidal space-periodic space-analytic solutions to the equations of hydrodynamics. An elementary bound shows that due to the special structure of the nonlinear terms in the equations for modified solutions, effectively they lack a half of the spatial gradient. This appears to be a novel mechanism for depletion of nonlinearity. We present a two-phase iterative procedure yielding an expanded bound for the guaranteed time of the space analyticity of the hydrodynamic solutions.
 - Keywords
 - энстрофия пространственная аналитичность вырождение нелинейности
 - Date of publication
 - 02.06.2025
 - Year of publication
 - 2025
 - Number of purchasers
 - 0
 - Views
 - 76
 
References
- 1. Фриш У. Турбулентность. Наследие А. Н. Колмогорова. М.: Фазис, 1998. 343 с.
 - 2. Matthaeus W.H., Pouquet A., Mininni P.D., Dmitruk P., Breech B. Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence // Phys. Rev. Lett. 2008. V. 100. 085003. https://doi.org/10.1103/PhysRevLett.100.085003
 - 3. Dorch S.B.F., Archontis V. On the saturation of astrophysical dynamos: Numerical experiments with the no-cosines flow // Solar Phys. 2004. V. 224. P. 171-178. https://doi.org/10.1007/s11207-005-5700-4
 - 4. Donzis D.A., Gibbon J.D., Gupta A., Kerr R.M., Pandit R., Vincenzi D. Vorticity moments in four numerical simulations of the 3D Navier-Stokes equations // J. Fluid Mech. 2013. V. 732. P. 316-331. https://doi.org/10.1017/jfm.2013.409
 - 5. Gibbon J.D., Donzis D.A., Gupta A., Kerr R.M., Pandit R., Vincenzi D. Regimes of nonlinear depletion and regularity in the 3D Navier-Stokes equations // Nonlinearity. 2014. V. 27. P. 2605-2625. https://doi.org/10.1088/0951-7715/27/10/2605
 - 6. Gibbon J.D. Modal dependency and nonlinear depletion in the three-dimensional Navier-Stokes equations // Recent progress in the theory of the Euler and Navier-Stokes equations // Eds. Robinson J. C., Rodrigo J. L., Sadowski W., Vidal-López A. Cambridge: Cambridge University Press, 2016. P. 57-76. (London Mathematical Society Lecture Note Series. V. 430). https://doi.org/10.1017/cbo9781316407103.005
 - 7. Gibbon J.D., Gupta A., Krstulovic G., Pandit R., Politano H., Ponty Y., Pouquet A., Sahoo G., Stawarz J. Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations // Phys. Rev. E. 2016. V. 93. 043104. https://doi.org/10.1103/PhysRevE.93.043104
 - 8. Jeyabalan S.R., Chertovskii R., Gama S., Zheligovsky V. Nonlinear large-scale perturbations of steady thermal convective dynamo regimes in a plane layer of electrically conducting fluid rotating about the vertical axis // Mathematics. 2022. V. 10. 2957. https://doi.org/10.3390/math10162957
 - 9. Foias C., Temam R. Gevrey class regularity for the solutions of the Navier-Stokes equations // J. Funct. Anal. 1989. V. 87. P. 359-369. https://doi.org/10.1016/0022-1236 (89)90015-3
 - 10. Bradshaw Z., Grujic Z., Kukavica I. Analyticity radii and the Navier-Stokes equations: recent results and applications // Recent progress in the theory of the Euler and Navier-Stokes equations Eds. Robinson J. C., Rodrigo J. L., Sadowski W., Vidal-López A. Cambridge University Press. 2016. P. 22-36. (London Mathematical Society Lecture Note Series. V. 430). https://doi.org/10.1017/CBO9781316407103.003
 - 11. Zheligovsky V. Space analyticity and bounds for derivatives of solutions to the evolutionary equations of diffusive magnetohydrodynamics // Mathematics. 2021. V. 9. 1789. https://doi.org/10.3390/math9151789
 - 12. Levermore C.D., Oliver M. Analyticity of solutions for a generalized Euler equation // J. Diff. Equations. 1997. V. 133. P. 321-339. https://doi.org/10.1006/jdeq.1996.3200
 - 13. Zheligovsky V. A priori bounds for Gevrey-Sobolev norms of space-periodic three-dimensional solutions to equations of hydrodynamic type // Adv. Diff. Equations. 2011. V. 16. P. 955-976. https://doi.org/10.57262/ade/1355703183
 - 14. Foias C., Guillope C., Temam R. New a priori estimates for Navier-Stokes equations in dimension 3 // Comm. Partial Diff. Equations. 1981. V. 6. P. 329-359. https://doi.org/10.1080/03605308108820180
 - 15. Biswas A., Foias C. On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades // Annali di Matematica Pura ed Applicata. 2014. V. 193. P. 739-777. https://doi.org/10.1007/s10231-012-0300-z