Президиум РАНДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

РЕШЕНИЕ ЗАДАЧ ПРОДОЛЬНОГО СДВИГА ФИЗИЧЕСКИ НЕЛИНЕЙНЫХ ТЕЛ С ЗАВИСЯЩИМИ ОТ ВИДА НАПРЯЖЕННОГО СОСТОЯНИЯ СВОЙСТВАМИ

Код статьи
S2686740025030094-1
DOI
10.31857/S2686740025030094
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 522 / Номер выпуска 1
Страницы
58-64
Аннотация
Деформационные свойства конструкционных материалов, горных пород, композитных материалов и др. зависят от вида внешнего воздействия, и степень такой зависимости определяется структурными особенностями материалов. Для данных материалов характерна связь объемного и сдвигового деформирования. Кривые деформирования обладают нелинейностью даже при малых деформациях. В работе представлены определяющие соотношения, описывающие нелинейное поведение данных материалов в условиях малых деформаций. Показано, что классические гипотезы антиплоского сдвига не могут быть использованы. Численно решается задача антиплоского сдвига длинного призматического тела с квадратным сечением, которое содержит круглое в плоскости сечения сквозное отверстие. Показано, что в условиях сдвиговой нагрузки для тела характерны трехосное напряженное состояние и изменение объема.
Ключевые слова
неоднородные материалы определяющие соотношения продольный сдвиг трехосность напряжений соотношение Рамберга–Остуда
Дата публикации
04.12.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
17

Библиография

  1. 1. Lomakin E.V., Fedulov B.N. Nonlinear anisotropic elasticity for laminate composites // Meccanica. 2015. V. 50. P. 1527–1535. https://doi.org/10.1007/s11012-015-0104-5
  2. 2. Fedulov B.N., Bondarchuk D.A., Lomakin E.V. Longitudinal elastic nonlinearity of composite material // Frattura ed Integrità Strutturale. 2024. V. 18. № 67. P. 311–318. https://doi.org/10.3221/JGF-ESIS.67.22
  3. 3. Obid S., Halliovic M., Ureve J., Starman B. Non-linear elastic tension–compression asymmetric anisotropic model for fibre-reinforced composite materials // Intern. J. Engineering Science. 2023. V. 185. 103829. https://doi.org/10.1016/j.jtengsci.2023.103829
  4. 4. Smith E.W., Pascoe K.J. The role of shear deformation in the fatigue failure of a glass fibre-reinforced composite // Composites. 1977. V. 8. Iss. 4. P. 237–243. https://doi.org/10.1016/0010-4361 (77)90109-4
  5. 5. ASTM Standards: ASTM D3039/D3039M-14: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials // ASTM International. 2014. https://doi.org/10.1520/D3039_D3039M-14
  6. 6. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture // ASTM International. 2016. ASTM D6641/D6641M-16e2. https://doi.org/10.1520/D6641_D6641M-16E01
  7. 7. Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus // ASTM International. 2017. ASTM E111-17. https://doi.org/10.1520/E0111-17
  8. 8. Walsh J.B. The effect of cracks on the compressibility of rocks // J. Geophys. Res. 1965. V. 70. Iss. 2. P. 381–389. https://doi.org/10.1029/JZ070i002p00381
  9. 9. Walsh J.B. The effect of cracks in rocks on the uniaxial elastic compression of rocks // J. Geophys. Res. 1965. V. 70. Iss. 2. P. 399–411. https://doi.org/10.1029/JZ070i002p00399
  10. 10. Sun J.-Y., Zhu H.-Q., Qin S.-H., Yang D.-L., He X.-T. A review on the research of mechanical problems with different moduli in tension and compression // J. Mech. Sci. Technol. 2010. V. 24. P. 1845–1854. https://doi.org/10.1007/s12206-010-0601-3
  11. 11. Rabotnov Y.N. Creep Problems in Structural Members. Amsterdam: North-Holland, 1969. 822 p. https://doi.org/10.1115/1.3408479
  12. 12. Lomakin E.V. Mechanics of media with stress-state dependent properties // Physical Mesomechanics. 2007. V. 10. Iss. 5–6. P. 255–264. https://doi.org/10.1016/j.physme.2007.11.004
  13. 13. Lomakin E., Korolkova O. Stress and strain fields near cracks in solids with stress state-dependent elastic properties under conditions of anti-plane shear // Acta Mechanica 2024. V. 235. P. 6585–6597. https://doi.org/10.1007/s00707-024-04034-6
  14. 14. Ramberg W., Osgood W.R. Description of stress-strain curves by three parameters: Technical Report NACA-TN-902. 1943.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека