RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

RESEARCH OF ANNULAR NOZZLE THRUST IN THE TURBULENT OUTFLOW CONDITION

PII
S2686740025030089-1
DOI
10.31857/S2686740025030089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 522 / Issue number 1
Pages
51-57
Abstract
The results of calculations and measurements of the annular nozzle thrust force in a turbulent outflow regime of high-temperature combustion products are presented. Calculations are carried out on the basis of the Favre-averaged Navier–Stokes equations and the Boussinesq approximation for describing the processes of turbulent transfer. The analysis of exhaust nozzle form of annular device with internal deflector on the value of developed thrust is performed. By results of comparison of calculated and corresponding measured values of annular nozzle thrust it is performed validation of calculated model. It is established, that in the cavity of the inner deflector a “stationary” turbulent regime with high values of the turbulent transfer parameters is established.
Keywords
модель турбулентности тяга кольцевое (выхлопное) сопло численное исследование измерения
Date of publication
19.12.2024
Year of publication
2024
Number of purchasers
0
Views
18

References

  1. 1. Levin V.A., Afonina N.E., Gromov V.G., Магмулович I.S., Khmelevsky A.N., Markov V.V. Spectra signals of gas pressure pulsations in annular and linear dual slotted nozzles // Combustion Science and Technology. 2019. V. 191. № 2. P. 339–352. https://doi.org/10.1080/00102202.2018.1467405
  2. 2. Olsen M.E., Coakley T.J. The Lag Model, a Turbulence Model for Non Equilibrium Flows // 15th AIAA Computational Fluid Dynamics Conference. 2001. AIAA 2001–2564. https://doi.org/10.2514/6.2001-2564
  3. 3. Wilcox D.C. Multiscale Model for Turbulent Flows // AIAA J. 1988. V. 26. № 11. P. 1311–1320. https://doi.org/10.2514/6.1986-29
  4. 4. Левин В.А., Афонина Н.Е., Громов В.Г., Хмелевский А.Н. Численное исследование течения в кольцевом сопле на основе турбулентной модели // Доклады РАН. Физика, технические науки. 2022. Т. 503. № 1. С. 47–51. https://doi.org/10.31857/S26867400220200801
  5. 5. Favre A. Equations des gaz turbulents compressibles. Pt 1: Formes generals // Journal de Mécanique. 1965. V. 4. № 3. P. 361–390.
  6. 6. Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP Technique for High Temperature Gas Flows Numerical Simulation // Proc. of the 5th European Symposium on Aerothermodynamics for Space Vehicles. Cologne, Germany. 8–11 November 2004. SP-563, February 2005. P. 323–328.
  7. 7. Варнати Ю., Мазс У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ. М.: Физматлит, 2003. 351 с.
  8. 8. Левин В.А., Пережоган В.Н., Хмелевский А.Н. Особенности структуры течения продуктов сгорания в сферической полузамкнутой полости // ФГВ. 1995. Т. 31. № 1. С. 32–40.
  9. 9. Левин В.А., Афонина Н.Е., Громов В.Г., Смехов Г.Д., Хмелевский А.Н., Марков В.В. Газодинамика и тяга выходного устройства реактивного двигателя с кольцевым соплом // ФГВ. 2012. Т. 48. № 4. С. 38–50.
  10. 10. Иров Ю.Д., Кейль Э.В., Маслов Б.Н., Павлухин Ю.А., Породенко В.В., Степанов Е.А. Газодинамические функции. М.: Машиностроение, 1965. 400 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library