Обычный вывод уравнений движения в механике и уравнений поля в теории поля основан на принципе наименьшего действия с подходящей функцией Лагранжа. При независимой от времени функции Лагранжа функция координат и скоростей, называемая энергией, постоянна. Данное сообщение представляет другой подход – вывод общей формы уравнений движения, которые обеспечивают постоянство энергии, заданной в виде функции обобщенных координат и соответствующих скоростей. Показано, что это – уравнения Лагранжа с добавочными гироскопическими силами. При выводе явно использовано то, что энергия задана как функция на касательном расслоении конфигурационного многообразия. По известной функции энергии находится функция Лагранжа. Обобщенные уравнения Лагранжа и Гамильтона выводятся без использования вариационных принципов. Новый метод вывода проиллюстрирован на примере некоторых уравнений.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации