Обычный вывод уравнений движения в механике и уравнений поля в теории поля основан на принципе наименьшего действия с подходящей функцией Лагранжа. При независимой от времени функции Лагранжа функция координат и скоростей, называемая энергией, постоянна. Данное сообщение представляет другой подход – вывод общей формы уравнений движения, которые обеспечивают постоянство энергии, заданной в виде функции обобщенных координат и соответствующих скоростей. Показано, что это – уравнения Лагранжа с добавочными гироскопическими силами. При выводе явно использовано то, что энергия задана как функция на касательном расслоении конфигурационного многообразия. По известной функции энергии находится функция Лагранжа. Обобщенные уравнения Лагранжа и Гамильтона выводятся без использования вариационных принципов. Новый метод вывода проиллюстрирован на примере некоторых уравнений.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation