Разработана математическая модель гибких (по теориям Т. фон Кармана и Грина–Лагранжа) физически нелинейных пористых размерно-зависимых балок Эйлера–Бернулли под действием поперечной знакопеременной нагрузки. Искомые дифференциальные уравнения получены из принципа Гамильтона–Остроградского. Разработаны итерационные алгоритмы (конечно-разностный метод в сочетании с методом переменных параметров упругости при учете физической нелинейности) расчета хаотических и гиперхаотических колебаний как механической системы с “почти” бесконечным числом степеней свободы. Хаос рассматривается согласно определению Гулика. Выявлена неустойчивость балочных структур как для металлических сплошных, так и для пористых функционально-градиентных балок Эйлера–Бернулли в рамках концепции Лаврентьева–Ишлинского и Рэлея–Тейлора.
Разработана математическая модель гибких (по теориям Т. фон Кармана и Грина–Лагранжа) физически нелинейных пористых размерно-зависимых балок Эйлера–Бернулли под действием поперечной знакопеременной нагрузки. Искомые дифференциальные уравнения получены из принципа Гамильтона–Остроградского. Разработаны итерационные алгоритмы (конечно-разностный метод в сочетании с методом переменных параметров упругости при учете физической нелинейности) расчета хаотических и гиперхаотических колебаний как механической системы с “почти” бесконечным числом степеней свободы. Хаос рассматривается согласно определению Гулика. Выявлена неустойчивость балочных структур как для металлических сплошных, так и для пористых функционально-градиентных балок Эйлера–Бернулли в рамках концепции Лаврентьева–Ишлинского и Рэлея–Тейлора.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации