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Рассматриваемый ниже генератор лазерного 
излучения позволяет реализовать оба режима: 
импульсный – при длительности накачки мень-
ше 0.2–0.5 мс, и непрерывный – при длитель-
ности накачки до 2 мс и выше. Высокоэнерге-
тические лазеры, т. е. лазеры с энергией импуль-
сов в десятки и сотни джоулей [1, 2], равно как 
и мощные лазеры непрерывной генерации [3],  
имеют сегодня широкий круг применений, 
в частности, в промышленности или при лик-
видации чрезвычайных ситуаций. В промыш-
ленности – прежде всего модификация поверх-
ностной структуры металлических изделий, 
например, лопаток турбин авиационных двига-
телей (т. н. “наклеп”), позволяющая значительно 
увеличить ресурс изделий [4–6]; обработка ме-
таллических изделий, такая как сварка, резка, 
наплавка [7]. А при ликвидации чрезвычайных 
ситуаций – дистанционное измельчение над-
строек при пожарах на газовых скважинах [8, 9]. 
Эта процедура должна проводиться с расстояния 

50–100 м, поскольку тепловое излучение горя-
щих скважин не позволяет подойти ближе.

Принципиальная схема рассматриваемого 
твердотельного генератора лазерного излуче-
ния представлена на рис. 1. Ее ключевым эле-
ментом является усилительный модуль [10], со-
стоящий из вакуумной и криогенной камер (ВК, 
КК), а также шести Yb: YAG активных элемен-
тов (АЭ) толщиной 0.85 см с содержанием ионов 
иттербия 0.4, 0.6, 1.0, 1,0, 0.6 и 0.4 ат. %. Модуль 
дополнен неустойчивым телескопическим кон-
фокальным резонатором (З1, З2).

Сборка из шести АЭ (в дальнейшем сборка) 
накачивается с двух сторон излучением диодной 
накачки мощностью 2 × 200 кВт (ДН1, ДН2). Се-
чение накачиваемой области 8 × 8 см2. Параме-
тры диодной накачки приведены в табл. 1. В рас-
четной модели параметры генератора лазерного 
излучения рассматриваются на протяжении од-
ного импульса двусторонней накачки длитель-
ностью до 2 мс. Качество сборки, охлаждаемой 
гелием температурой 100 К при давлении 11 атм, 
демонстрирует рис. 2. Волновой фронт измерен 
интерферометром ФТИ – 100 (ЗАО “Дифрак-
ция”, г. Новосибирск). Цель измерения – опре-
деление влияния потоков гелия, охлаждающих 
АЭ, на искажение волнового фронта.

Как видно из рис.  2, термооптические иска-
жения волнового фронта сборки в накачиваемой 
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области не превышают 0.2λ и в стационарном ре-
жиме могут быть компенсированы либо внешней 
компенсирующей пластиной, либо адаптивным 
зеркалом, как это реализуется в работах [11, 12].

КОМПЬЮТЕРНАЯ МОДЕЛЬ  
ГЕНЕРАТОРА

В  настоящей работе предложена численная 
модель дискового криогенного Yb: YAG гене-
ратора с диодной накачкой для генерации им-
пульсов высокой энергии. В модели вместо не-
устойчивого телескопического конфокального 
резонатора рассматривается плоскопараллель-
ный резонатор с одним глухим зеркалом и вы-
ходным зеркалом с коэффициентом отражения R.  
За основу взята модель дискового криогенно-
го Yb: YAG усилителя [13], в которой поглоще-
ние излучения накачки и  создание инверсии 
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Рис. 1. Твердотельный лазер с диодной накачкой: З1, З2 – зеркала резонатора; ВК – вакуумная камера, КК – кри-
огенная камера; ДН1, ДН2 – излучение диодной накачки; ДЗ1, ДЗ2 – дихроичные зеркала; АЭ – активные элемен-
ты (Yb: YAG).
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Рис. 2. Волновой фронт сборки, охлаждаемой ге-
лием. Шкала справа – в длинах волн (λ = 632 нм).
Диаметр накачиваемой области составляет 80 % от 
диаметра АЭ.

Таблица 1. Параметры диодной накачки генератора

Параметр Значение

Длина волны излучения накачки, нм λdp = 940 ± 3

Ширина спектральной линии излучения накачки, нм ∆λdp ≤ 5

Длительность импульса тока накачки, мс τ
dp = 0.3 ÷2

Частота следования импульсов тока накачки От однократного до 10 Гц

Продолжительность работы, ч 24
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рассматривается в одномерном (вдоль оптиче-
ской оси) приближении, учитывающем различ-
ное содержание ионов иттербия в каждом АЭ. 
В  поперечном оптической оси направлении 
предполагается однородное распределение ин-
тенсивности излучения накачки. Температура 
АЭ фиксирована. По мере распространения че-
рез лазерную среду форма спектра пучка накачки 
меняется, и этот эффект также включен в модель. 
Усиление спонтанного излучения (УСИ), огра-
ничивающее инверсию, в модели рассчитывается 
для реальной формы спектра спонтанного излу-
чения в трехмерной геометрии, соответствующей 
конструкции усилителя, причем для каждого АЭ 
УСИ рассчитывается в соответствии с вложенной 
в него энергией. Бо́льшая часть УСИ, падающая 
на поверхность АЭ под углами, превышающими 
угол полного внутреннего отражения, поглоща-
ется в кладдинге, окружающем по периметру на-
качиваемую область, и не зависит от количества 
АЭ. Остальная часть излучения проходит через 
несколько АЭ, поэтому интенсивность выходя-
щего из накачиваемой области излучения зави-
сит от ее длины вдоль оптической оси.

Входными параметрами модели являются: 
количество АЭ, их размер и расположение, кон-
центрация ионов иттербия в каждом АЭ; темпе-
ратура АЭ; длина волны, спектр, длительность 
и  мощность накачки; спектры поглощения 
и спонтанного излучения, сечения поглощения 
и вынужденного излучения на длинах волн из-
лучения накачки и выходного импульса. Причем 
спектры и сечения поглощения и вынужденно-
го излучения зависят от температуры. В расчетах 
в данной работе используются полученные нами 
сечения поглощения и спонтанного излучения 
для температур 100, 125, 150, 175 К, но имеются 
данные и для 200, 225, 250 и 300 К [10]. Предпо-
лагается постоянная мощность накачки задан-
ной длительностью. Рассчитываются временные 
зависимости распределений вдоль оптической 
оси инверсии населенностей, вложенной и за-
пасенной энергии, коэффициента усиления сла-
бого сигнала. Зная запасенную энергию, можно 
найти зависимости энергии выходного импуль-
са от энергии входного импульса при произволь-
ном количестве проходов усилителя для различ-
ных суммарных потерь в канале усиления.

В  отличие от моделирования усилителя, 
в котором накопленную в АЭ за время накач-
ки энергию “снимает” импульс внешнего зада-
ющего генератора, здесь импульс излучения за-
рождается в активной среде из спонтанного из-
лучения и усиливается благодаря обратной связи 

в резонаторе. Поэтому модель усилителя [13] до-
полнена уравнением (3) на плотность фотонов 
излучения nph, а в уравнение для относительной 
инверсии (2) добавлены потери на уходящее из 
резонатора излучение:
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где �P t z� �, ( , , )�  – интенсивность излучения 
двухсторонней накачки в  фотонах, β(z) =  
= NU(z)/NYb(z) – относительная инверсия, NYb(z) 
и NU(z) – полная концентрация Yb3+ и населен-
ность верхнего уровня, σe(λ) и σa(λ) – сечения вы-
нужденного излучения и поглощения, τ – время 
жизни возбужденного состояния, c – скорость 
света, g g zav z
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потери в резонаторе, R – коэффициент отраже-
ния выходного зеркала, I(t) – интенсивность 
излучения в резонаторе, hve – энергия фотона 
излучения, Lg = zm и Lc – длина усиления, рав-
ная длине поглощения и расстояние между зер-

калами, а � �
S

L

p

c4 2�( )
 – телесный угол, под кото-

рым видно выходное зеркало из центра глухого 
зеркала. Интенсивность накачки на торцах уси-
лителя задается мощностью импульса накачки 
P(t) и его спектром fp(λ) ( f dp( )� � �� 1):
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где hvp – энергия фотона накачки, Sp – сечение 
луча накачки и zm = NАЭd – длина поглощения 
NАЭ АЭ толщиной d. Выходная мощность излу-
чения находится из выражения

W t I t S c h n t L Sout th p th e ph g p( ) ( ) ( )� � � � � � � � �� � � .
Первое слагаемое в правой части уравнения (2) 

определяет увеличение инверсии из-за поглощения 
накачки, второе слагаемое – уменьшение инверсии 
из-за спонтанного распада, включая УСИ (фактор 
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MASE). Уменьшение инверсии за счет генерируемо-
го излучения описывает третье слагаемое.

Входными параметрами предложенной моде-
ли (наряду с параметрами модели усилителя [13]) 
являются потери в резонаторе αth и расстояние 
между зеркалами Lc, поэтому далее представле-
ны результаты исследования влияния этих пара-
метров на характеристики лазера. Заметим, что 
в модели рассматривается плоскопараллельный 
резонатор с одним глухим зеркалом как наибо-
лее простой. Однако результаты моделирования 

усилительных и энергетических характеристик 
можно использовать и для других типов резо-
наторов, с такими же потерями и расстоянием 
между зеркалами (табл. 2).

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНЫХ 
ЭКСПЕРИМЕНТОВ

Зависимости коэффициента усиления и вы-
ходной мощности от времени накачки представ-
лены на рис. 3 для разных потерь и расстояний 
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Рис. 3. Зависимость коэффициента усиления и выходной мощности от времени накачки. (а, б) – αth = 0.005 см–1 
(R = 95 %); (в, г) – αth = 0.136 см–1 (R = 25 %); (а, в) – Lc = 100; (б, г) – Lc = 300 см. Красная пунктирная прямая – 
порог генерации.

Таблица 2. Параметры резонаторов, обеспечивающие заданные потери αth

αth, см–1 0.005 0.035 0.068 0.136 0.216
Коэффициент отражения выходного зеркала 
плоскопараллельного резонатора, R, % 95 70 50 25 11

Неустойчивый конфокальный резонатор, М 1.026 1.2 1.41 2 3

Примечание. Здесь М – однопроходный коэффициент увеличения, который для неустойчивого конфокального резонатора 
равен M = R2/R1 

(см. рис. 1).
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Wp = 2 x 200 кВт, T = 100 K

R = 25% 
Lc = 100 cм

gav = αth = 0.005 cм−1 

ηabs = 92.4%

ηout

η, %
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tp = 1.5 мс −Wout = 334 кВт, ηout = 82.9%, ηase= 1.6%, ηheat= 8%  
tp = 2 мс −Wout = 334 кВт, ηout = 83.1%, ηase= 1.4%, ηheat= 8%  
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Рис. 4. Доли энергии накачки, идущие на генерируемое излучение, усиленное спонтанное излучение и нагрев на-
качиваемой области от длительности накачки для Lc = 100 см. (а) – αth = 0.005 см–1 (R = 95%), (б) – αth = 0.035 см–1 
(R  = 70 %), (в) – αth = 0.068 см–1 (R = 50 %), (г) – αth = 0.136 см–1 (R = 25%).

между зеркалами в  резонаторе. Качественное 
поведение зависимостей одинаково, поэтому, 
для примера, рассмотрим рис. 3а. Как видно, по 
мере накачки коэффициент усиления в АЭ рас-
тет и на времени 11 мкс достигает порогового 
значения для начала генерации. С этого момен-
та времени начинает расти плотность фотонов 
в резонаторе, причем затравкой для этого про-
цесса является спонтанное излучение. Одновре-
менно появляется выходное излучение, мощ-
ность которого экспоненциально нарастает. Ко-
эффициент усиления (пока плотность фотонов 
мала) продолжает расти, достигая максимума, 
когда скорость накачки верхнего уровня сравня-
ется со скоростью расселения за счет вынужден-
ного излучения. Затем коэффициент усиления 
начинает уменьшаться, но остается еще выше 
порогового значения, поэтому выходное излуче-
ние продолжает расти. Уменьшение мощности 
выходного излучения начинается, когда усиле-
ние становится меньше порогового значения. 

Дальше процесс повторяется, но уже не с ну-
левого значения усиления, поэтому требуется 
меньше времени для достижения порога. Одна-
ко при этом в АЭ накапливается меньше энер-
гии, превышающей пороговый уровень, и, со-
ответственно, меньше максимальная мощность 
каждого последующего выходного импульса 
вплоть до выхода на стационар, когда мощность 
выходного излучения постоянна, а коэффици-
ент усиления равен потерям. С увеличением по-
терь в резонаторе от αth = 0.005 см–1 (R = 95 %) 
до 0.136 см–1 (R = 25 %) (см. рис. 3a–г) увеличи-
вается как время до начала генерации от ~ 17 до 
~ 280 мкс, так и время выхода на стационар от  
~ 150 мкс до ~ 1–1.5 мс. Причем увеличение 
расстояния между зеркалами на эти времена 
влияет слабо, однако приводит к заметному воз-
растанию времени между импульсами.

На рис.  4а–г приведены доли энергии на-
качки, идущие на генерируемое излучение, 
усиленное спонтанное излучение и  нагрев 
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накачиваемой области от длительности накач-
ки для расстояния между зеркалами Lc = 100 см 
и  потерь в  резонаторе, меняющихся от αth = 
= 0.005 см–1 (R = 95%) до 0.136 см–1 (R = 25%). 
На рис. 4а–г также приведены значения мощно-
сти излучения и долей энергии накачки, идущих 
на генерируемое излучение, усиленное спонтан-
ное излучение и нагрев накачиваемой области 
в момент окончания накачки для длительности 
накачки 1.0, 1.5 и 2.0 мс.

ВЫВОДЫ

Показана возможность преобразования энер-
гии накачки в лазерное излучение с КПД, пре-
восходящим 80 %.

КПД лазера растет с увеличением длитель-
ности накачки и уменьшением потерь в резо-
наторе за счет уменьшения спонтанного излу-
чения и достигает для tp = 2 мс 83.1 % при R = 
= 95 % и 76.3 % при R = 70 %. При этом мощ-
ность генерируемого излучения на стационар-
ной стадии равна 334 и 315 кВт.

При частоте накачки 10 Гц длительностью 2 мс  
средняя мощность генерации достигает значе-
ния 6.65 кВт при R = 95 % и 6.1 кВт при R = 70 %.  
Средняя мощность генерации может быть уве-
личена в n раз при увеличении в n раз длитель-
ности накачки или частоты ее генерации.

Генерация реализуется в  виде затухающих 
импульсов, период которых увеличивается с уве-
личением расстояния между зеркалами.

Доля энергии накачки, идущая в спонтанное 
излучение, уменьшается с увеличением длитель-
ности накачки и уменьшением потерь в резонато-
ре и равна 1.4 % для R = 95 % и 8 % для R = 70 %.

Доля энергии накачки, идущая на нагрев нака-
чиваемой области, не зависит от потерь в резона-
торе и расстояния между зеркалами и равна 8 %.

Спонтанное излучение поглощается в клад-
динге и также дает вклад в нагрев. Поэтому сум-
марная доля энергии накачки, идущая в  теп-
ло, при максимальной длительности накачки 
увеличивается с 9.4 % для R = 95 % до 16 % для  
R = 70 %.

В импульсно-периодическом режиме с часто-
той 10 Гц для поддержания заданной темпера-
туры необходим холодильник мощностью 0.55 
и 0.97 кВт, соответственно для R = 95 % и 70 %.
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The application of an amplifying module developed for a pulse-periodic amplifier as an active medium of 
a pulse-periodic continuous-wave laser radiation generator is considered. The created computer model of 
such a generator is described. The results of computational experiments are presented. It is shown that in this 
generator in the free-running mode it is possible to obtain more than 80% of the pump energy conversion 
into coherent radiation of the generator.
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