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Важным направлением исследований явля-
ется разработка методов, которые обеспечивают 
надежное воспламенение и стабилизацию горе-
ния углеводородных топлив в сверхзвуковых по-
токах в условиях низких статических температур 
и давлений, когда обычные газодинамические 
методы не позволяют этого сделать.

Для решения задачи поджига и стабилизации 
горения топлив в сверхзвуковых потоках в на-
шей стране и за рубежом ведутся исследования 
по применению плазмотронов на основе дуго-
вого разряда высокого давления, а также других 
типов электрических разрядов.

Исследования, выполненные в Японии и 
США с применением плазмотронов на основе 
дугового разряда высокого давления [1-3], пока-
зывают, что плазменные струи, выдуваемые че-
рез стенку канала аэродинамической установки, 
не обладают скоростным напором, достаточным 

для выноса продуктов плазмохимических реак-
ций атомов и молекул и их ионов в возбужден-
ных квантовых состояниях в центральную об-
ласть потока. 

Исследования по применению других типов 
электрических разрядов, начатые в 1997–2000 гг. 
в ряде институтов России [4–6], продолжаются до 
сих пор, достигнуты определенные успехи [7, 8]. 
Альтернативным направлением обеспечения на-
дежного воспламенения и стабилизации горения 
в интересующих условиях предполагается исполь-
зование наработок синглетного кислорода [9].

Наибольшее различие в значениях темпера-
тур, характеризующих распределение энергии 
по степеням свободы электронов, атомов, моле-
кул и их ионов, достигаются в так называемых 
наносекундных разрядах, сверхвысокочастотных 
и высокочастотных разрядах. Однако по техно-
логическим причинам эти разряды трудно реа-
лизовать в каналах. Так, для создания наносе-
кундных разрядов с требуемыми параметрами 
необходимы напряжения на уровне 40–50 кВ.  
Для ввода сверхвысокочастотного излучения 
в канал с целью создания разряда требуются по-
лупрозрачные диэлектрические окна, темпера-
тура разрушения которых значительно ниже, 
чем температура стенки канала. Для создания 
высокочастотных разрядов требуется излуче-
ние с  длинами волн, значительно большими, 
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Предложены концепции создания в сверхзвуковом потоке продольного электрического разряда, 
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горения в топливовоздушных потоках.
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чем характерные размеры каналов, и поэтому 
возникают трудности в создании таких разря-
дов в металлических каналах из-за известного 
скин-эффекта.

В связи с этим представляет интерес иссле-
дование возможности применения электриче-
ских разрядов, т. е. разрядов, которые создаются 
между электродами, вводимыми внутрь каналов. 
Значительные продвижения в методике созда-
ния таких разрядов для каналов, реализуемых 
первоначально около стенки, а затем с некото-
рой задержкой воспламенения сносимых по-
степенно в основную область потока, имеются 
в ОИВТ РАН [4, 8].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В ЦАГИ были проведены исследования воз-
можности использования электрических разря-
дов для создания модулей пилотного пламени, 
в которых значительные по протяженности зоны 
плазмохимических реакций реализуются как не-
посредственно в центральной области высоко-
скоростного потока, так и с их смещением бли-
же к стенке при приемлемых затратах электри-
ческой мощности [10–12]. Помимо требования 
к величине потребляемой мощности, важными 
являются требования к обеспечению низкого аэ-
родинамического сопротивления основному то-
пливовоздушному потоку в канале, к возможно-
сти ввода дополнительного топлива и газофаз-
ных каталитических добавок непосредственно 
в зону разряда и его окрестности для интенси-
фикации энерговыделения в ней и к сокраще-
нию времени задержки воспламенения основ-
ного потока.

Концепции модулей для создания электри-
ческого разряда с указанными свойствами раз-
работаны в ЦАГИ совместно с МРТИ. В ходе 
работы исследованы две различные концепции, 
схематично показанные на рис. 1.

В случае рис. 1а разряд создается между про-
филированным анодом 1 и плоским катодом 2.  
Анод выполнен в виде комбинации вертикаль-
ной прямоугольной, ромбовидной в плане и на-
клонной (с  углом наклона примерно 45°) ча-
стей. В вертикальной части имеется ряд отвер-
стий для инжекции дополнительных компонент 
в  сверхзвуковой поток. Боковые края анода 
максимально зашлифованы, а тыльные обводы 
скруглены.

Эксперименты с модулем, представленным 
на рис. 1а, показывают, что после пробоя раз-
ряд при низких значениях тока локализуется 

между выступом (“зубцом”) на нижнем торце 
анода и плоскостью катода. Однако дальнейшее 
увеличение тока приводит к перемещению ка-
нала разряда скачком в новое стабильное поло-
жение, в котором он локализуется вдоль гори-
зонтальной оси, проходящей приблизительно 
посредине вертикального участка анода. Ста-
бильность горения разряда возрастает при ин-
жекции в  аноде пропана через ряд отверстий 
I и кислорода через ряд отверстий II. Так возни-
кает объемноцентрированный разряд, фотогра-
фия которого показана на рис. 2а. Она получена 
при скоростях потока, соответствующих числу 
Маха М = 2; статическое давление 2.89104 Па,  
статическая температура 160 К, ток разряда 
1.6 А, напряжение на разряде  1.7 кВ, расход 
пропана через ряд отверстий I 12.3 г/с, расход 
кислорода через ряд отверстий II 5.6 г/с, время 
экспозиции кадра 1/500 с.

Разряд сохранял объемноцентрированную 
форму при давлении 5.33104 Па в условиях, ког-
да нижний торец анода находился вблизи стен-
ки, его нижняя кромка имела форму, показан-
ную на рис. 1а, и была отшлифована, чтобы при 
увеличении тока разряд скачком перемещался 
в среднюю часть канала. Выполненные числен-
ные и экспериментальные исследования [11, 12] 
показали, что причиной такого поведения раз-
ряда являлось возникновение вблизи середины 
вертикального участка продольной, узкой в по-
перечном направлении, значительной по длине 
области с пониженным статическим давлением 
с увеличенным значением в ней так называемо-
го приведенного поля E/N (E – напряженность 
электрического поля, N – концентрация ней-
тральных молекул газа). В силу особенностей 
распределения статического давления проис-
ходит стягивание в эту область струек топлива, 
подаваемого из отверстий в аноде, к середине 
его вертикального участка. Такова физическая 
причина, обусловливающая устойчивое место-
положение электрического разряда и сгорание 
в его канале подаваемого вспомогательного то-
плива. Исследования [13] показали, что темпе-
ратура электронов в разряде может находиться 
на уровне  1–4 эВ, что значительно выше газо-
кинетической температуры, т. е. разряд является 
существенно неравновесным.

В случае, показанном на рис. 1б, модуль со-
стоял из установленных по потоку трубчатого 
анода и катода в виде пластины с двумя выступа-
ми, выполненных из нержавеющей стали. Анод 
герметично вводился через стенку проточной 
части 1 с использованием изолятора 2 и имел 
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геометрию 3, удобную для размещения в рабо-
чей части и подвода топлива и окислителя. Мо-
дуль заканчивался полой камерой 4, в которой 
при создании разряда происходило образование 
химически активной смеси, инжектируемой 
в поток. Вспомогательное топливо подводилось 
к этой камере по трубке, которая протянута вну-
три анода. Окислитель подводился по наружной 
трубке, образующей корпус анода. Срез вну-
тренней трубки заглублен по отношению к срезу 
анода. В рассматриваемых здесь экспериментах 

инжекция пропана осуществлялась через вну-
тренний канал, а кислорода – через канал боль-
шего диаметра.

Катод 5 имел тот же потенциал, что и метал-
лическая стенка рабочей части установки. Ближ-
ний к аноду выступ катода 6 предназначен для 
надежного пробоя разрядного промежутка. По-
сле зажигания разряда он сносился потоком вдоль 
горизонтального участка катода и при определен-
ной величине разрядного тока замыкался в ос-
новном на дальний от анода выступ 7. Расстояние 
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Рис. 1. Концепции разработанных электроразрядных модулей.

Рис. 2. Фотографии разрядов, созданных при использовании модулей, схемы которых показаны на рис. 1а и рис. 1б  
соответственно.
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между выступами катода равно 35–37 мм. Иссле-
дования показали, что для достижения разрядом 
дальнего выступа катода в  схеме, показанной 
на рис. 1б, продольная часть анода должна быть 
по возможности более короткой, чтобы обеспе-
чить высокий скоростной напор набегающего 
воздуха на срезе анода. Центр отверстия в аноде 
и верхняя кромка заднего выступа катода находи-
лись на одной горизонтальной линии. На рис. 2б 
приведена фотография разряда, полученная 
при скоростях потока, соответствующих числу  
Маха М = 2; статическое давление 3.44∙104 Па, 
статическая температура 160 К, ток разряда 1.8 А,  
напряжение на разряде 1.2 кВ, расход пропана 1.2 г/с,  
коэффициент избытка кислорода 1.6.

На промежутке выполнения серии фотографий 
 40 с разряд имел стационарный вид. После вы-
ключения разряда сохранялась протяженная по 
длине высокотемпературная зона, которая, по-ви-
димому, была аналогична факелу пропан-кисло-
родного пламени, но существовала в окружающем 
холодном сверхзвуковом потоке. Горение прекра-
щалось после выключения подачи кислорода.

С  целью проверки предположения влия-
ния величины скоростного напора набегающе-
го воздуха на формирование области с высокой 
температурой в разрядном промежутке модуля 
проведены в отсутствии разряда измерения ста-
тического и  полного давлений между нижней 
кромкой анода и  пластиной, на которой был 
установлен катод модуля, при длинах горизон-
тального участка анода L = 85 мм и L = 42 мм. 
По этим данным рассчитана величина скорост-
ного напора (рис. 3). Параметрами распределе-
ний, помимо длины горизонтального участка 
анода L, являлись величины статических дав-
лений на входе в рабочую часть аэродинамиче-
ской трубы. Из результатов измерений следует, 
что в случае анода с длинным горизонтальным 
участком скоростной напор около анода был 
примерно в два раза более низким, чем в слу-
чае короткого горизонтального участка анода. 
При этом существовала корреляция в геометрии 
и физике разряда: при длинном горизонтальном 
участке анода разряд замыкался только на перед-
ний выступ катода и имел низкое напряжение, 
характерное для дуговых разрядов.

Для повышения информативности проводи-
мых экспериментальных исследований в ЦАГИ 
при участии ИНХС РАН разработана инженер-
ная спектроскопическая методика определения 
температуры высокоскоростных высокотемпера-
турных потоков, содержащих молекулы С2, ос-
нованная на близости в определенных условиях 

газокинетической и  вращательной температур 
указанных молекул, с  привлечением наиболее 
полной из известных в настоящее время баз дан-
ных о  параметрах плазмохимических реакций 
в углерод-водородных смесях [14]. По разрабо-
танной методике проведены исследования рас-
пределения температур в зоне плазмохимических 
реакций модуля, представленного на рис. 1б, при 
инжекции, наряду с кислородом, этилена и про-
пана. При этом условия были такими, что враща-
тельная и газокинетическая температуры близки 
друг к другу. В расчетах использовалось равновес-
ное приближение для определения молекулярных 
спектров. В экспериментах применялся спектро-
метр, который обеспечивал работу в диапазоне  
 2001100 нм. Расстояние между соседними дли-
нами волн, в которых регистрировались значения 
интенсивности излучения, составляло 0.27 нм. Из-
мерительный объем, из которого спектрометр по-
лучал информацию, имел диаметр примерно 1 мм 
в плоскости, перпендикулярной линии визирова-
ния, и длину 56 мм вдоль этой линии.

Распределения вращательной (газокинетиче-
ской) температуры по высоте разрядного проме-
жутка, полученные на ряде расстояний от среза 
анода, горизонтальный участок которого имел 
длину 42 мм, для этилена и пропана в качестве 
вспомогательных газов при токе разряда 1.5 А,  
представлены на рис.  4а и  4б соответственно. 
В случае эксперимента с этиленом расход газа 
составлял 1.5 г/с, расход кислорода – 6.2 г/с. При 
этом напряжение на разряде регистрировалось на 
уровне 0.951 кВ. В случае использования про-
пана расход газа также составлял 1.5 г/с, расход  
кислорода – 7.14 г/с, напряжение на разряде – 
1.11.2 кВ. Полученные данные показывают, 
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Рис. 3. Распределение скоростного напора в проме-
жутке между нижней кромкой анода и стенкой: 1   
L = 85 мм, р = 5.33104 Па; 2  L = 42 мм, р = 3.92104 Па;  
3  L = 42 мм, р = 5.04104 Па.
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Рис. 4. Распределения вращательной температуры по высоте разрядного промежутка, полученные на ряде расстоя-
ний от среза анода для этилена (а) и пропана (б) при токе разряда 1.5 А и длине горизонтального участка анода 42 мм.

что в обоих случаях основная зона тепловыделе-
ния смещена в область ниже координаты Y = 0, 
за которую принята линия, соединяющая центр 
анода и верхний край дальнего выступа катода, 
и отражают неравномерность энерговыделения 
в исследуемой зоне. При использовании про-
пана зарегистрированы более высокие макси-
мальные температуры, чем при использовании 
этилена, т. е. имела место такая же ситуация, как 
в соответствующих пламенах. На одном и том 
же удалении от анода X = 21.5 мм температура 
в случае пропана оказалась более высокой, чем 
при использовании этилена. В проведенных экс-
периментах могли реализоваться значения тем-
ператур на уровне 35004500 К, более высокие, 
чем в этилен-кислородном и пропан-кислород-
ном пламени ( 3000 К) или в сверхзвуковом 
потоке воздуха, нагреваемом одним электри-
ческим разрядом при сопоставимых значениях 
подводимой электрической мощности и равных 
значениях статического давления ( 2000 К).

Полученные положительные результаты по 
поджигу топливовоздушной смеси при исполь-
зовании модуля, представленного на рис. 1б, по-
зволили продолжить проведение эксперимен-
тальных исследований в канале с предварительно 
подогретым набегающим сверхзвуковым пото-
ком на входе. Модуль в варианте, показанном на 
рис. 1б, в новой серии экспериментов использо-
вался с инжекцией через него кислорода и водо-
рода. Канал, в котором был установлен модуль, 
имел прямоугольное сечение 80 × 100 мм. Стенки 

канала имели дренажные отверстия вдоль про-
дольной оси симметрии для измерения статиче-
ского давления. Электроразрядный модуль раз-
мещался в канале в специальном отсеке так, что-
бы анод и катод оказались в пограничном слое. 
Инжекция основного топлива в канал осущест-
влялась через три топливных пилона с таким рас-
четом, чтобы электроразрядный модуль находил-
ся в струе одного из них. Канал стыковался с пло-
ским аэродинамическим соплом, рассчитанным 
на число Маха М = 2.1. Исследования выпол-
нены в диапазоне полных температур потока на 
входе в сопло Т0  785850 К.

Пример результатов, полученных при ста-
тической температуре потока на входе в канал 
 435 К (T0  818 К) и коэффициенте избыт-
ка воздуха α = 1.54, представлен на рис. 5, где 
показаны распределения отношений давления  
р/р0 по длине канала до (1) и после (2) поджи-
га. Расход кислорода через модуль равен 12.1 г/с, 
полное давление равно 9.02∙105 Па, напряжение 
на разряде составляло 0.8 кВ, ток разряда ра-
вен 1.8 А. Прекращение горения производилось 
в последовательности: выключение инжекции 
кислорода, затем водорода, прекращение подачи 
тока и только затем топлива.

В проведенных исследованиях показано, что 
методика совместной инжекции водорода и кис-
лорода в зону разряда реализованного модуля 
позволяет существенно снижать энергетические 
затраты. Мощность, подводимая к разряду, на-
ходилась на уровне  1.42.5 кВт и снижалась 
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с увеличением расхода кислорода. В том случае, 
когда удавалось комбинировать разряд с газоди-
намическими способами управления течением 
в канале, мощность равнялась 0.72 кВт.

ВЫВОДЫ

Таким образом, с выбранным вариантом мо-
дуля, в котором реализована концентрированная 
инжекция водорода и кислорода в зону объемно-
центрированного электрического разряда, полу-
чены экспериментальные данные, подтвержда-
ющие возможность воспламенения и поддержа-
ния горения топливовоздушной смеси в канале 
при числе Маха потока М = 2.1 и температуре  
Т0  785850 К. Установлено, что разработанная 
концепция создания и применения объемноцен-
трированного электрического разряда позволя-
ет осуществить поджиг и стабилизацию горения 
при низких энергетических затратах в цепи мо-
дуля при соответствующем подборе параметров.
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It is suggested the concepts of the longitudinal electric not binding to walls of a camera discharge creation in 
the supersonic flows and its application for ignition and flame holding of the fuel combustion.
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