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Свойство солитонов сохранять свою иден-
тичность в столкновениях друг с другом сразу же 
привело к понятиям солитонного газа и соли-
тонной турбулентности, а также к необходимо-
сти статистического описания данных процес-
сов. В. Е. Захаров был первым, кто предложил 
кинетическое уравнение для солитонного газа 
в рамках уравнения Кортевега – де Вриза, учи-
тывая парное взаимодействие солитонов [1]. Эти 
идеи стали особенно популярными в последнее 
время [2–5]. Начали проводиться специальные 
эксперименты [6, 7], а также появились сведе-
ния о наблюдении солитонной турбулентности 
в поле морских волн [8, 9].

Наряду с этим стало проводиться прямое сто-
хастическое моделирование нелинейных эволю-
ционных уравнений, которое свободно от всех 
ограничений, неизбежно появляющихся в ки-
нетической теории солитонов [5, 10, 11]. При 

этом могут быть рассмотрены процессы, ко-
торые протекают в рамках и неинтегрируемых 
уравнений, в  которых все же солитоны могут 
жить достаточно долго [12, 13]. При этом воз-
никает проблема задания начальных условий, 
соответствующих солитонному газу без приме-
си дисперсионных хвостов. Формально в рам-
ках интегрируемых моделей здесь могут быть ис-
пользованы N-солитонные решения с достаточ-
но большим количеством солитонов. Наличие 
в этих решениях экспоненциальных множите-
лей делает задачу вычислительно сложной, хотя 
и здесь есть определенные результаты [5, 11].  
Более просто рассмотреть разреженный соли-
тонный газ, когда в начальный момент времени 
солитоны не перекрываются (хотя от экспонен-
циально малых перекрытий не удается избавить-
ся), и задавать начальное поле в виде линейной 
суммы невзаимодействующих солитонов со 
случайными амплитудами и фазами. Посколь-
ку скорости солитонов зависят от их амплитуд, 
с течением времени солитоны многократно вза-
имодействуют друг с другом, приводя к стацио-
нарности солитонной турбулентности. В случае 
неинтегрируемых уравнений солитоны излучают 
в процессе взаимодействия, и газ перестает быть 
чисто солитонным, однако при малом излуче-
нии его можно рассматривать как солитонный 
[12, 13]. При таком задании начального поля 
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Исследуются статистические свойства разреженного солитонного газа на примере уединенных  
волн – решений обобщенного уравнения Кортевега – де Вриза. Показано, что существует 
критическая плотность солитонного газа вне зависимости от типа нелинейности в обобщенном 
уравнении Кортевега – де Вриза, что связано с отталкиванием солитонов одинаковой полярности. 
Вычислены первые два статистических момента волнового поля (среднее значение и дисперсия), 
являющиеся одновременно инвариантами уравнения типа Кортевега – де Вриза. Рассчитаны 
плотности функции распределения разреженного солитонного газа. Отмечается особенность в этих 
функциях в области малых значений поля из-за перекрытия экспоненциальных хвостов солитонов.

Представлено академиком РАН О.В. Руденко 22.09.2024 г.
Поступило 22.09.2024 г.

После доработки 22.09.2024 г.
Принято к публикации 03.10.2024 г.

© 2025 г.    Е. Н. Пелиновский1, 2, *, С. Н. Гурбатов3, **

ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ГАЗА СОЛИТОНОВ 
УРАВНЕНИЯ ТИПА КОРТЕВЕГА – ДЕ ВРИЗА

УДК 534.231.2

ФИЗИКА

1 Институт прикладной физики им А.В. Гапонова-Грехова 
Российской академии наук, Нижний Новгород, Россия
2 Национальный исследовательский университет – 
Высшая школа экономики, Нижний Новгород, Россия
3 Национальный исследовательский Нижегородский 
государственный университет им. Н.И. Лобачевского, 
Нижний Новгород, Россия
* E-mail: pelinovsky@ipfran.ru
** E-mail: gurb@rf.unn.ru



	 ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ГАЗА      	 45

ДОКЛАДЫ  РОССИЙСКОЙ  АКАДЕМИИ  НАУК.  ФИЗИКА,  ТЕХНИЧЕСКИЕ  НАУКИ      том 520     2025

функции распределения элементов поля опре-
деляются численно, и пока нет теории, которая 
бы позволила бы объяснить ее свойства. Поэто-
му в качестве первого шага мы поставили цель 
рассмотреть функции распределения иницииро-
ванного солитонного газа, связав их со статисти-
кой амплитуд солитонов.

СОЛИТОНЫ УРАВНЕНИЯ ТИПА 
КОРТЕВЕГА – ДЕ ВРИЗА

В качестве рабочей модели мы выберем обоб-
щенное уравнение Кортевега – де Вриза со сте-
пенной нелинейностью (α > 1)
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Частными случаями уравнения (1) являются 
каноническое уравнение Кортевега – де Вриза 
(α = 2), модифицированное уравнение Кортеве-
га – де Вриза (α = 3), а также неинтегрируемое 
уравнение Шамеля (α = 3/2); последнее урав-
нение активно используется для описания волн 
в плазме, электрических цепях и метаматериалах 
(см., например, последние работы [14, 15].

Уравнение (1) имеет три сохраняющиеся ве-
личины: массу, энергию (импульс) и Гамильто-
ниан), из которых нам понадобятся первые два:
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Нахождение уединенных решений уравнения 
(1) для любой амплитуды является тривиальной 
задачей, поэтому мы приведем здесь выражения 
для солитонов на нулевом пьедестале без выво-
да (α > 1):

u x t A B x Vt xp( , ) sech [ ( )]� � � 0 ,  p �
�
2

1�
,    (3)

где A – амплитуда солитона, B–1 – характерная 
ширина солитона, V – его скорость и х0 – на-
чальное положение солитона. Параметры соли-
тона связаны между собой:
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СТАТИСТИЧЕСКИЕ МОМЕНТЫ 
СОЛИТОННОГО ГАЗА

Солитоны имеют экспоненциальные хвосты 
и являются строгими решениями уравнения (1) 

на бесконечной оси. Учитывая, что энергия в экс-
поненциальных хвостах мала, можно считать, что 
солитон является решением уравнения (1) и на 
конечном, достаточно большом интервале. Поэ-
тому достаточно рассматривать большой интер-
вал L, в котором можно поместить много соли-
тонов, и наложить периодические граничные ус-
ловия, так что солитоны, двигаясь по кругу, будут 
многократно взаимодействовать друг с  другом. 
Предполагая газ солитонов разреженным, зада-
дим в начальный момент последовательность не-
пересекающихся уединенных волн со случайными 
амплитудами и фазами:

u x t F x x Ai
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где за функцию F обозначен солитон (3), N – 
число солитонов в расчетной области, а амплиту-
ды и фазы представлены случайными числами 1.  
Как правило, в численных расчетах фазы выби-
раются детерминировано с определенным ша-
гом, чтобы импульсы были разделены в  про-
странстве, хотя это и не обязательно. Один из 
примеров начального распределения солито-
нов в уравнении Шамеля показан на рис. 1 [13]. 
В процессе взаимодействия фазы солитонов пе-
ремешаются, так что волновое поле забудет их 
начальное значение. Поэтому реально в после-
довательности (5) имеется только одна случай-
ная величина – амплитуда солитона, и требуется 
найти вероятностные характеристики волнового 
поля через заданное распределение амплитуд со-
литонов или решить обратную задачу.

Прежде чем решать эту задачу, вычислим 
первые два статистических момента солитонно-
го газа, являющиеся инвариантами уравнения 
(1), и следовательно сохраняющиеся во времени. 
Первый инвариант в случае последовательности 
разделенных уединенных волн пропорционален 
среднему значению поля
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где интеграл вычисляется от детерминиро-
ванной функции при постоянной амплитуде, 
и в силу малости ширины солитона по сравне-
нию с размером расчетной области мы замени-
ли конечные пределы интегрирования на бес-
конечные. Интеграл в  (6) легко вычисляется, 
следовательно,

1 Заметим, что схожие проблемы возникают и в турбулент-
ности Бюргерса, где градиент поля скорости описывается им-
пульсами типа (3), см. [16, 17].
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Рис. 1. Одна из реализаций Шамелевского солитонного газа [13].
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где ρ = N/L – плотность солитонов, а коэффи-
циент пропорциональности есть определенный 
интеграл от гиперболической функции в неко-
торой степени.

Второй центральный момент (дисперсия)

�2 2 2 2 2� � � �u u u u                 (8)

также не меняется со временем, поскольку 
определяется первыми двумя инвариантами 
обобщенного уравнения Кортевега – де Вриза, 
и, в частности, второй инвариант есть
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В результате дисперсия солитонного газа 
включает в себя два слагаемых
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причем каждое из слагаемых имеет собственный 
числовой коэффициент, зависящий от α. По-
скольку дисперсия обязана быть положительной 

величиной, то плотность газа должна быть мень-
ше критической:
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и газ должен быть достаточно разреженным. Этот 
результат впервые был получен для каноническо-
го уравнения Кортевега – де Вриза (α = 2) в рабо-
тах [18, 19], но, как следует из проведенного ана-
лиза, он универсален и применим к любому газу 
однополярных солитонов.

Таким образом, зная статистику амплитуд 
уединенных волн в начальный момент време-
ни, можно рассчитать первые два статисти-
ческих момента волнового поля, причем они 
не меняются со временем. Заметим, что даже 
если бы мы учитывали случайные фазы (но без 
перекрытия уединенных волн), то статистика 
фаз не влияет на статистические моменты вол-
нового поля. Более того, отсюда также следу-
ет, что однополярный газ должен быть доста-
точно разреженным для сохранения солитон-
ной структуры поля.
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ВЕРОЯТНОСТНОЕ РАСПРЕДЕЛЕНИЕ 
ПОСЛЕДОВАТЕЛЬНОСТИ ОДИНАКОВЫХ 

СОЛИТОНОВ СО СЛУЧАЙНЫМИ ФАЗАМИ

В  экспериментах обычно считают процесс 
эргодическим, и плотность вероятности находят 
через относительную длину пребывания процес-
са в интервале (u, u + du):

W u
L

dx
du

n

n

( ) � �1 .                     (12)

В частности, такой подход использовался при 
анализе статистики ударных волн в нелинейной 
акустике [20, 21]. Поскольку мы рассматриваем до-
статочно разреженный солитонный газ, то каждое 
слагаемое в (12) определяется формой отдельного 
солитона. Учитывая, что солитон симметричен от-
носительно вертикальной оси, для каждого значе-
ния u(x) имеется два интервала dxn на переднем и за-
днем его склонах, так что для отдельного солитона
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причем функция f(u) одинаковая для всех соли-
тонов. В результате плотность вероятности по-
следовательности одинаковых по амплитуде со-
литонов со случайными фазами есть
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где, как и ранее, ρ = N/L – плотность газа соли-
тонов. Эта функция для А = 1 и ρ = 1/30 пред-
ставлена на рис. 2. Ее минимум приходится на 
(u/A)min = [2/(1 + α)]1(α – 1). Обратим внимание, 
что плотность функции распределения не инте-
грируется при u ® 0, что связано с бесконечной 
продолжительностью хвостов солитонов, которые 
хотя и малы, но занимают все пространство, и все 
они дают вклад в области малых значений поля. 
Отметим, что аналогичная проблема вероятно-
сти возникает при анализе случайных Римановых 
волн на стадии многопотоковых режимов [22].  
Одним из способов избавления от этой расхо-
димости есть “обрезание” хвостов солитона на 
расстояниях, когда соседние солитоны начина-
ют пересекаться. Для периодической последо-
вательности волн с равными интервалами меж-
ду ними их надо обрезать на расстоянии l* = l/2,  
где l = L/N = 1/ρ. Поскольку расстояние между 
солитонами случайны, более конструктивен дру-
гой путь. Распределение (14) мы обрезаем в обла-
сти малых значений umin, где ее величина выбира-
ется из условия, чтобы интеграл от плотности ве-
роятности W(u) равнялся единице. Из (14) имеем 
следующее уравнение для определения umin:

Q u A
du

u A uu
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Очевидно, что с уменьшением плотности газа 
граница vmin сдвигается в область все более ма-
лых значений, а с ростом амплитуды – в сторону 
больших значений. Поскольку для разреженных 
солитонов ρ 1, это очень маленькие значения 
по сравнению с амплитудой солитона, то прибли-
жение (14) с условием (15) описывает как основ-
ную часть плотности вероятности, так и моменты 
распределения. Рассчитанные распределения со-
литонного газа для модифицированного уравне-
ния Кортевега – де Вриза (α = 3), уравнения Кор-
тевега – де Вриза (α = 2), и уравнения Шамеля  
(α = 3/2) представлены на рис. 2. Как видим, кри-
вые солитонных ансамблей в разных эволюцион-
ных уравнениях близки между собой, и такое рас-
пределение можно считать универсальным.

Хотя плотность функции распределения при-
шлось обрезать в области малых значений поля, на 
статистические моменты солитонного газа это не 
сказывается, так как после умножения на и или и2  
все интегралы становятся сходящимися. Именно 
поэтому нам удалось вычислить среднее значение 
поля и дисперсию солитонного газа (7) и (10), не 
прибегая к процедуре обрезания функций W(u).

ВЕРОЯТНОСТНОЕ РАСПРЕДЕЛЕНИЕ 
РАЗРЕЖЕННОГО СОЛИТОННОГО ГАЗА

В  случае последовательности солитонов со 
случайными амплитудами нам необходимо сум-
мировать (13)
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Рис. 2. Распределения (14) для уравнения Кортеве-
га – де Вриза (α = 2, 1), модифицированного урав-
нения Кортевега – де Вриза (α = 3, 2) и уравнения 
Шамеля (α = 3/2, 3).
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где pm = m/N – частота появления m-й амплиту-
ды в ряде из N солитонов. Считая, что солитонов 
достаточно много, дискретный ряд (16) можно 
заменить интегралом

W u f u A W A dAA

u

( ) ( ; ) ( )�
��

�� ,         (17)

где W(A) – плотность распределения амплитуд 
и  интегрирование производится по всем вол-
нам, в  которых A > u. В  результате получаем 
следующее выражение для плотности функции 
распределения:

W u
u

W A dA

A u

A

u

( )
( ) ( )

�
�

�� �

��

��
�

� �

2 1
1 1

.     (18)

Обратим внимание на отмеченную выше рас-
ходимость плотности распределения солитонного 
газа в области малых значений поля, так что эту 
функцию надо рассматривать при u > umin, где ми-
нимальное значение определено формулой (15).

В качестве примеров рассмотрим солитонный 
газ в рамках нескольких важных эволюционных 
уравнений. В частности, плотность газа в рамках 
канонического уравнения Кортевега – де Вриза 
(α = 2) находится через простой интеграл

W u
u

W A dA

A u
A

u

( ; )
( )

2
6

�
�

��

�� ,            (19)

и в случае равномерного распределения амплитуд 
солитонов в диапазоне [0¸1] записывается в виде

W u
u

u( ; )2
2 6

1� �� ,  u umin < < 1.       (20)

Аналогично для модифицированного урав-
нения Кортевега – де Вриза (α = 3) плотность 
функции распределения есть

W u
u

W A dA

A uu

( ; )
( )

3
8

2 2
�

�

��

�� ,             (21)

которая в случае равномерного распределения 
амплитуд в диапазоне [0¸1] вычисляется явно:

W u
u

u
u

( ; ) ln3
8 1 1 2

�
� �

� .            (22)

Среди неинтегрируемых нелинейных эво-
люционных уравнений популярно уравнение 
Шамеля, для которого α =3/2. В  этом случае 

распределение солитонного газа описывается 
интегралом

W(и; 3/2)W u
u

W A dA

A uu

( ; / )
( )

/ /
3 2

5
1 2 1 2

�
�

��

�� .          (23)

В  случае равномерного распределения ам-
плитуд в интервале [0¸1] интеграл вычисляется 
аналитически:

W(и; 3/2) W u
u

u u( ; / ) ( )3 2
4 5
3

1 1 2� � �
� .      (24)

Все три функции представлены на рис.  3. 
Это убывающие функции, близкие между собой 
в области больших амплитуд.

ЗАКЛЮЧЕНИЕ

В работе выполнен анализ плотности функ-
ции распределения последовательности солито-
нов со случайными фазами и амплитудами. В об-
щем виде вычислены первые два момента вол-
нового поля, которые, являясь инвариантами 
обобщенного уравнения Кортевега – де Вриза, 
не меняются со временем. Функции распределе-
ния определены на начальной стадии эволюции 
солитонного газа, когда уединенные волны еще 
разделены в пространстве. Они вычислены ана-
литически для равномерного распределения ам-
плитуд и представляют собой монотонно спадаю-
щие функции. В широком диапазоне изменения 
степени нелинейности эти кривые близки между 
собой. Отмечается проблема расчета распределе-
ния малых значений поля в солитонном газе из-
за перекрытия экспоненциально малых хвостов 
солитонов и необходимости соответствующего 
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u
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Рис. 3. Плотность распределения солитонного газа 
в рамках уравнения Кортевега – де Вриза (α = 2, 1), 
модифицированного уравнения Кортевега – де Ври-
за (α = 3, 2) и уравнения Шамеля (α = 3/2, 3) в слу-
чае равномерного распределения амплитуд в интер-
вале [0¸1]. ρ = 1/30.
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их “обрезания”. Теоретические функции распре-
деления волнового поля неплохо объясняют на-
блюдаемые в численных экспериментах [10, 13].
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The statistical properties of a rarefied soliton gas are studied using solitary waves – solutions of the generalized 
Korteweg – de Vries equation as an example. It is shown that there is a critical density of a soliton gas 
regardless of the type of nonlinearity in the generalized Korteweg – de Vries equation, which is associated 
with the repulsion of solitons of the same polarity. The first two statistical moments of the wave field (the 
mean value and the dispersion), which are simultaneously invariants of the Korteweg – de Vries-type 
equation, are calculated. The densities of the distribution function of a rarefied soliton gas are calculated. 
A feature in these functions in the region of small field values due to the overlap of the exponential tails of 
the solitons is noted.
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