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Впервые представлено исследование мето-
дом спектроскопии комбинационного рассея-
ния (КР) света серии растительных масел, со-
держащих конъюгированные октадекатриеновые 
(K-C18:3) полиненасыщенные жирные кисло-
ты (ПНЖК) . (Для простоты изложения, говоря 
о наличии высших жирных кислот в масле, мы 
будем подразумевать их радикалы в молекулах 
триглицеридов, которые и являются основными 
составляющими растительных масел.) Наиболее 
известными маслами с K-C18:3 ПНЖК являются 
масло косточек граната и тунговое масло, в соста-
вы которых в больших количествах (55–80 масс. %)  
входят соответственно пуниковая и α-элеостеа-
риновая кислоты [1–3]. Помимо того, α-элеосте-
ариновая кислота была в обнаружена маслах мон-
гонго, косточек вишни и др. [4–8].

Традиционные сферы применения масел 
с K-C18:3 ПНЖК – это косметическая и лако-
красочная промышленности [2, 6, 9]. Однако 
ряд исследований показывает, что пуниковая 
и α-элеостеариновая кислоты обладают антиок-
сидантными, противовоспалительными, имму-
номодулирующими, антидиабетическими, анти-
канцерогенными свойствами [1, 4, 10, 11]. Вви-
ду этого, масла с такими кислотами в настоящее 
время рассматриваются как перспективное сы-
рье для создания лекарственных средств и био-
логически активных добавок (БАД) [1, 4, 10, 11]. 
В частности, недавно в продаже стали появлять-
ся коммерческие БАД, содержащие гранатовое 
масло или непосредственно пуниковую кислоту.

Структурные формулы (С18Н30О2) изо-
мерных друг другу пуниковой (цис-, транс-, 
цис‑9,11,13-октадекатриеновой), α-элеостеарино-
вой (цис-, транс-, транс‑9,11,13-октадекатриено-
вой) и α-линоленовой (цис-, цис-, цис‑9,12,15-ок-
тадекатриеновой) кислот показаны на рис.  1. 
В молекуле α-линоленовой кислоты три двойных 
углерод-углеродных (С=С) связи являются несо-
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Впервые показано, что с использованием метода спектроскопии комбинационного рассеяния 
света можно определять содержание конъюгированных октадекатриеновых (K-C18:3) кислот 
в масле, по крайней мере при их содержании более 8 масс. %. Установлено, что по спектрам 
комбинационного рассеяния можно достоверно различить между собой изомеры K-C18:3 кислот, 
содержащие сопряженные (в пуниковой и α-элеостеариновой кислотах) и несопряженные (в 
α-линоленовой кислоте) С=С-связи. Полученные результаты могут быть использованы для 
развития эффективных и неразрушающих методов анализа состава и качества масел, содержащих 
конъюгированные октадекатриеновые полиненасыщенные жирные кислоты, и биологических 
добавок на их основе.
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Рис. 1. Структурные формулы (С18Н30О2) изомерных друг другу пуниковой, α-элеостеариновой и α-линолено-
вой кислот. Молекулярные структуры рассчитывались методами теории функционала плотности (ТФП, см. раздел 
“Материалы и методы”). Зеленым цветом показаны двойные углерод-углеродные связи.

пряженными. В углеводородных цепях пуниковой  
и α-элеостеариновой кислот существует после-
довательность из трех сопряженных (конъюгиро-
ванных) С=С-связей. В такой последовательно-
сти С=С-связи чередуются с одинарными (С–С) 
связями (см. рис. 1). Отметим, что иногда для пу-
никовой кислоты используется термин омега‑5 
ПНЖК [10].

Для идентификации K-C18:3 ПНЖК в расти-
тельных маслах весьма актуально создание не-
разрушающих экспресс-методов, не требующих 
пробоподготовки. Это связано, с одной стороны, 
с перспективой использования этих масел в фар-
мацевтике и современными тенденциями вне-
дрения таких методов при проведении экспер-
тизы качества лекарственных препаратов [12]. 
С другой стороны, из-за своей высокой химиче-
ской активности последовательности из сопря-
женных С=С-связей могут разрушаться в про-
цессе подготовки образцов [8].

Спектроскопия КР в течение нескольких де-
сятков лет привлекает внимание исследователей 
как быстрый и не требующий подготовки проб 
метод идентификации и анализа качества расти-
тельных масел, в том числе с целью выявления 
контрафактной продукции [13–15]. К настоя-
щему моменту в литературе можно найти спек-
тры КР большого количества растительных ма-
сел [13–15]. Также спектроскопия КР является 
общепризнанным методом идентификации по-
следовательностей сопряженных С=С-связей 

в молекулах различных веществ [16–18]. Тем не 
менее, этот метод, как это ни странно, достаточ-
но редко применяется при исследовании масел, 
содержащих K-C18:3 ПНЖК.

Нам известно всего несколько опубликованных 
исследований масла косточек граната и тунгового 
масла методом спектроскопии КР [2, 9, 14, 19, 20].  
Спектр КР тунгового масла был опубликован в ра-
ботах [2, 19, 20]. Он имеет характерную особен-
ность: высокоинтенсивную линию с максимумом 
около 1630 см–1 [2], отвечающую валентным ко-
лебаниям C=C-связей. Для большинства масел 
в области 1600–1700 см–1 это КР-активное коле-
бание наблюдается на частоте 1658 ± 5 см–1 [14]. 
В работе [2] было показано, что причиной сдви-
га частоты этой линии является наличие или от-
сутствие сопряжения С=С-связей и  различие 
в конфигурации молекулы ПНЖК. Линия око-
ло 1630 см–1, по мнению авторов работы [2], от-
носится к колебаниям сопряженных С=С-свя-
зей в транс-конфигурации в молекуле α-элео-
стеариновой кислоты. В  свою очередь, линия 
1658 ± 5 см–1 связана с колебаниями несопря-
женных С=С-связей в  цис-конфигурации [2], 
и именно такие связи характерны для большин-
ства присутствующих в маслах жирных кислот.

В работе [14] без детального обсуждения был 
приведен спектр КР масла косточек граната. 
Спектр КР модифицированного масла косточек 
граната, а именно гидроксифенэтилового эфи-
ра этого масла, был исследован в работе [9]. Эти 
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спектры не соответствовали друг другу, в част-
ности, в положениях (около 1630 и 1654 см–1)  
линии, отвечающей валентным колебания 
С=С-связей. Мы предполагаем, что такие раз-
личия в спектрах могут быть связаны с составом 
и качеством исследованных масел. А именно, ав-
торы работы [9] показали, что при окислении ги-
дроксифенэтилового эфира масла косточек гра-
ната в спектре КР наблюдается сильное умень-
шение интенсивности линии около 1630 см–1. 
Это приводит к тому, что другие, более слабые 
линии становятся более заметными за счет из-
менения соотношения интенсивностей линий. 
Также о затухании линии около 1630 см–1 при 
фото- и термодеструкции тунгового масла сооб-
щалось в работах [2, 19].

Работ по исследованию других масел 
с K-C18:3 ПНЖК методами спектроскопии КР 
найти не удалось. В данной работе помимо изу-
чения масла косточек граната и тунгового масла 
метод спектроскопии КР в сочетании с кванто-
во-химическими расчетами впервые применял-
ся для изучения спектров КР масел монгонго 
и косточек вишни.

МАТЕРИАЛЫ И МЕТОДЫ

О б р а з ц ы. Исследовались жидкие расти-
тельные масла с различным содержанием в них 
K-C18:3 ПНЖК (α-элеостеариновой и  пуни-
ковой кислот): тунговое масло, масла косточек 
граната, монгонго, косточек вишни. Содержа-
ние в маслах K-C18:3 ПНЖК, а также олеино-
вой, линолевой и α-линоленовой кислот приве-
дены в табл. 1.

Для сравнения были исследованы:
– порошкообразная коммерческая БАД Омега‑5  

(омега-пептидный комплекс “STL Омега 5 
пептид IPH АG”, Россия), которая рассматри-
валась как образец пуниковой кислоты в твер-
дом состоянии;

– масла орехов кукуи и семян кунжута, кото-
рые являлись примером масел, не содержащих 
K-C18:3 ПНЖК.

Все масла и БАД закупались в специализиро-
ванных розничных и интернет-магазинах.

Э к с п е р и м е н т а л ь н а я   ч а с т ь. Для 
регистрации спектров КР образцов (капель масел 
и порошка БАД, помещенных на предваритель-
но очищенную алюминиевую подложку) исполь-
зовался оснащенный диодным лазером с длиной 
волны излучения 785 нм конфокальный КР-ми-
кроскоп Senterra II (Bruker, США) и  объектив 
с увеличением 20х (Ч.А. 0.40). Угол между волно-
выми векторами возбуждающего и  рассеянного 
излучений составлял 180°, спектральное разреше-
ние – 1.5 см–1, выходная мощность лазера – 100 мВт.  
Все измерения проводились при комнатной темпе-
ратуре. Для калибровки по частоте использовался 
спектр КР н-алкана эйкозана (C20H42).

К в а н т о в о - х и м и ч е с к о е   м о д е-  
л и р о в а н и е. Процедура моделирования 
была в деталях описана нами ранее [22]. Крат-
ко, методами теории функционала плот-
ности (ТФП) с  привлечением обобщенно-
го градиентного функционала ОLYP и  рас-
ширенного базиса гауссова типа (4z.bas)  
были рассчитаны молекулярные структуры, 
изображенные на рис. 1, и их спектры КР. Для 

Таблица 1. Содержания некоторых жирных кислот в исследуемых маслах 

Жирная кислота

Массовая доля жирных кислот в масле, масс. %

косточек
граната*

тунговое  
[2, 3]

монгонго 
[6]

косточек 
вишни [7]

семян
кунжута [7]

орехов
кукуи [21]

Пуниковая > 66 н/о**
α-элеостеариновая н/о 60–82 20–36 5–16 (8***) н/о н/о
Олеиновая 4–11 11–13 11–24 24–47 35–45 15–18
Линолевая 2–7 9–15 35–52 30–49 37–48 40–43
α-линоленовая < 3 ~3 н/о < 1 < 1 30–34

Примечания. * Содержание кислот указано в соответствии с требованиями качества для данного вида масла; 

** не обнаружена;

*** в соответствии с данными поставщика.
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Рис. 2. Смоделированные спектры КР пуниковой, α-элеостеариновой и α-линоленовой кислот и эксперименталь-
ный спектр КР БАД Омега‑5.

сравнения с  экспериментальными спектрами 
к рассчитанным методом ТФП спектрам приме-
нялась процедура уширения [22], при которой 
контур спектральной линии описывался взве-
шенной суммой функций Гаусса и Лоренца. Ос-
новываясь на оценках ширины линий в экспе-
риментальных спектрах КР, ширина линий при 
уширении рассчитанных спектров принималась 
равной 10 см–1.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Д и а п а з о н   600–1800 см–1. Смоделиро-
ванные спектры КР молекул пуниковой, α-эле-
остеариновой и α-линоленовой кислот, а так-
же экспериментальный спектр КР БАД Омега‑5 
в диапазоне 600–1800 см–1 показаны на рис. 2. 
Интенсивности во всех спектрах в этом диапа-
зоне нормированы на пиковую интенсивность 
полосы КР, соответствующей деформацион-
ным колебаниям СH2-групп (δ(СH2)) и наблю-
дающейся в экспериментальных и смоделиро-
ванных спектрах на частотах соответственно  
1440 ± 2 см–1 и 1450 ± 2 см–1. Выбор этой по-
лосы в качестве репера связан с тем, что она на-
блюдается в спектрах всех изучаемых образцов.

Как видно из рис.  2, смоделированные 
спектры КР молекул К–18:3 ПНЖК (пуни-
ковой и  α-элеостеариновой кислот), а  также 

экспериментальный спектр КР БАД Омега‑5 
достаточно схожи друг с  другом. Однако они 
кардинально отличаются от спектра их изо-
мера с несопряженными C=C-связями: α-ли-
ноленовой кислоты. Спектры К‑18:3 ПНЖК 
и БАД Омега‑5 содержат высокоинтенсивную 
линию с  максимумом около 1625  см–1, кото-
рая на основании квантово-химических рас-
четов была отнесена к  коллективным валент-
ным (ν(C=C)кс, индекс КС означает колебания 
в сопряженных связях), колебаниям C=C-свя-
зей в  последовательностях из трех сопряжен-
ных С=С-связей. Расчеты показали, что вклад 
в колебание ν(C=C)кс дают все три С=С-свя-
зи в  этой последовательности, т. е. связи как 
в транс-, так и в цис- конфигурациях. Это от-
несение линии около 1625 см–1 отличается от 
упомянутого отнесения, предложенного в рабо-
те [2], согласно которому колебание ν(C=C)кс –  
это колебание С=С-связей в транс-конфигура-
ции. Второе колебание, связанное с последова-
тельностями из трех сопряженных С=С-связей 
в молекулах К‑18:3 ПНЖК, относится к коллек-
тивными валентным (ν(C–C)кс) колебаниям оди-
нарных С–С-связей. Частоты колебания ν(C–C)кс  
в  рассчитанных спектрах КР составляют 1165 
и 1174 см–1 для пуниковой и α-элеостеариновой 
кислот соответственно, а в экспериментальном 
спектре БАД Омега‑5 – 1159 см–1. Интересно 
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Рис. 3. Спектры КР растительных масел в области 600–1800 см–1: синяя и красные кривые – спектры образцов, 
содержащих соответственно пуниковую и α-элеостеариновую (K-C18:3) ПНЖК, черные кривые – масла, в кото-
рых отсутствуют K-C18:3 ПНЖК.

отметить, что в  соответствии с  результатами 
квантово-химических расчетов в этом колебании 
принимают участие исключительно С–С-связи, 
входящие в –(С=С–С=С–С=С)– участок моле-
кулярной цепи. В смоделированном спектре КР 
изомера К‑18:3 ПНЖК, α-линоленовой кисло-
ты, колебания ν(C–C)кс и ν(C=C)кс отсутствова-
ли. Молекула этой кислоты содержит только не-
сопряженные C=C-связи, и вычисленное нами 
значение частоты их валентного колебания ока-
залось равным 1678 см–1, а приведенное в рабо-
те [23] экспериментальное значение – 1660 см–1.  
Таким образом, по спектрам КР легко разли-
чить между собой изомеры октадекатриеновых 
кислот с  сопряженными и  несопряженными 
C=C-связями.

Зарегистрированные в диапазоне 600–1800 см–1 
экспериментальные спектры КР изучаемых расти-
тельных масел приведены на рис. 3.

Как видно из рис.  3, спектры КР масел 
с K-C18:3 ПНЖК имеют характерную особен-
ность: линии с частотами около 1164 и 1630 см–1, 
которые, согласно нашим квантово-химическим 
расчетам, относятся соответственно к ν(C–C)кс 
и ν(C=C)кс колебаниям. Эти линии отсутствуют 
в спектрах масел семян кунжута и орехов кукуи, 
не содержащих K-C18:3 ПНЖК.

В  табл.  2 приведены значения отношений 
интенсивностей Iν(C–C)кс и Iν(C=C)кс линий КР, 
соответствующих ν(C–C)кс и ν(C=C)кс колеба-
ниям, к интенсивности линии с частотой око-
ло 1440 см–1 (колебание δ(СH2)). Как видно из 
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табл. 2, значения этих отношений растут с ро-
стом содержания в масле K-C18:3 ПНЖК. Такая 
зависимость интенсивности этих линий от со-
держания K-C18:3 ПНЖК в масле подтверждает 
отнесение, сделанное нами на основании кван-
тово-химических расчетов.

Отметим, что масла монгонго и  орехов ку-
куи имеют сходные жирнокислотные составы. 
Однако в масле орехов кукуи вместо α-элеосте-
ариновой кислоты примерно в том же количе-
стве (около 20–30 масс. %) содержится ее изомер 
с несопряженными C=C-связями: α-линолено-
вая кислота (см. табл. 1, рис. 1). Таким образом, 
различия в  спектрах КР этих масел, в  первую 
очередь присутствие линий с частотами около 
1164 и 1630 см–1 в спектре масла монгонго, так-
же подтверждают вывод о возможности разли-
чить по спектрам КР K-C18:3 ПНЖК от их изо-
мера, α-линоленовой кислоты.

Мы обнаружили, что спектроскопия КР обла-
дает высокой чувствительностью к присутствию 
в масле K-C18:3 ПНЖК. Например, содержание 
такой кислоты в  масле косточек вишни мало  
(8 масс. %, табл. 1). Однако обе линии, отвечаю-
щие колебаниям молекул K-C18:3 ПНЖК, имеют 
заметную интенсивность в спектре масла косто-
чек вишни. При этом линия с частотой около 
1630 см–1 является самой интенсивной в области  
600–1800  см–1 и  маскирует линию с  частотой 
1657 см–1, интенсивность которой пропорцио-
нальна содержанию жирных кислот с несопря-
женными C=C-связями [24]. Отметим, что по-
лоса поглощения присутствующей в масле виш-
ни α-элеостеариновой кислоты лежит в области 
200–300 нм [5], и при используемой нами длине 
волны возбуждения (785 нм) условия резонанс-
ного усиления не реализуются. По-видимому, 

такая высокая чувствительность спектров КР 
к  содержанию K-C18:3 ПНЖК объясняется 
большим сечением рассеяния для линий, соот-
ветствующих ν(C–C)кс и ν(C=C)кс колебаниям.

Таким образом, мы заключили, что линии 
КР с частотами около 1164 и 1630 см–1 являются 
маркерами присутствия K-C18:3 ПНЖК в расти-
тельных маслах и их анализ позволяет диагно-
стировать K-C18:3 ПНЖК в масле при содержа-
нии более 8 масс. %.

При анализе спектров КР масел, показанных 
на рис. 3, была обнаружена зависимость часто-
ты линии, соответствующей деформационно-
му δ(СH) колебанию С–H-связей в цис-конфи-
гурациях С=С-связей, от содержания K-C18:3 
ПНЖК. Частоты δ(СH) колебания в спектрах ма-
сел приведены в табл. 2. Как видно из табл. 2, при 
уменьшении содержания К-С18:3 ПНЖК в масле 
частота этого колебания монотонно увеличива-
ется: c 1253 см–1 для масла косточек граната до 
1259 см–1 для масла косточек вишни. В зареги-
стрированных нами спектрах масел орехов кукуи 
и семян кунжута, не содержащих K-C18:3 ПНЖК, 
δ(СH) колебание имело частоту 1264 см–1.

Мы полагаем, что частота δ(СH) колебания 
различна для молекулярных цепей с несопря-
женными и тремя сопряженными С=С-связя-
ми. Важно отметить, что молекулы кислот с не-
сопряженными С=С-связями в цепи всегда при-
сутствуют в растительных маслах. Это означает, 
что в  полосу, имеющую максимум интенсив-
ности в диапазоне 1253–1265 см–1, дают вклад 
колебания молекул как с несопряженными, так 
и сопряженными С=С-связями в цепи. Таким 
образом, наблюдаемый частотный сдвиг макси-
мума этой полосы мы связываем с тем, что при 

Таблица 2. Интенсивности Iν(C–C)кс и Iν(C=C)кс, а также частота δ(СH) колебания как функции содержания  
в масле K-C18:3 ПНЖК 

Масло K-C18:3 кислота Ожидаемое 
содержание, масс. % Iν(C–C)кс Iν(C=C)кс

Частота
δ(СH), см–1

Косточек 
граната пуниковая > 66 5.24 24.32 1253

Тунговое

α-элеостеариновая

60–82 5.24 22.47 1256
Монгого 20–36 1.65 7.13 1257
Косточек
вишни

5–16
(8) 0.77 3.09 1259

Орехов кукуи
отсутствует

– – – 1264
Семян 
кунжута – – – 1264
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уменьшении содержания К-С18:3 кислот уве-
личивается влияние колебаний несопряженных 
С=С-связей.

Д и а п а з о н  2650–3200 см–1. Спектры КР 
изучаемых масел и БАД Омега‑5 в области 2650–
3200 см–1 показаны на рис. 4.

Интенсивности линий в спектрах в этой об-
ласти нормированы на интенсивность линии  
с максимумом около 2853 см–1, отвечающей сим-
метричным валентным колебаниям С–Н-связей 
в СН2-группах [25].

В этой области наиболее заметные различия 
в спектрах были обнаружены для сравнитель-
но низкоинтенсивной полосы с частотой около 
3000 см–1. В спектрах масел, в составе которых 
присутствуют только кислоты с несопряженны-
ми С=С-связями, эта полоса отвечает валентно-
му колебанию С–H-связей (ν(C–H)) в цис-кон-
фигурациях С=С-связей [25]. В спектрах таких 
масел (масла орехов кукуи и семян кунжута) она 
имеет симметричный контур с максимумом на 
частоте 3012 см–1 (см. рис. 4а). В спектрах БАД 
Омега‑5 и масла косточек граната, содержащего 
пуниковую кислоту, эта полоса демонстрирует 
максимум на частоте 3002 cм–1 и асимметрич-
ное крыло на частоте 3012 см–1. В спектре тун-
гового масла, содержащего большое количество 
α-элеостеариновой кислоты, наблюдается дублет 

с частотами 2998 и 3012 см–1 (см. рис. 4б). Таким 
образом, в спектрах масел, содержащих K-C18:3 
кислоты, полоса с частотой около 3000 см–1 яв-
ляется суперпозицией по крайней мере двух ли-
ний. Одна линия связана с колебаниями в угле-
водородных цепях, содержащих сопряженные 
С=С-связи, вторая – с колебаниями в углеводо-
родных цепях с несопряженными С=С-связями.

По сравнению с линиями около 1164 и 1630 см–1,  
полоса с частотой около 3000 см–1 слабо зави-
сит от содержания K-C18:3 ПНЖК. Изменения 
в  форме этой полосы мы начинали наблюдать 
при ожидаемом содержании α-элеостеариновой 
кислоты, превышающем 20 масс. %. А именно, 
в спектре масла монгонго у полосы с максимумом 
3012 см–1 обнаруживается слабое дополнительное 
рассеяние на частоте 2998 см–1 (см. рис. 4б).

Однако для масла косточек граната и тунго-
вого масла полоса около 3000 см–1 демонстри- 
рует достаточно заметные различия (4 см–1) в по-
ложении максимума в сравнении с другими спек-
тральными линиями. Следовательно, именно эта 
полоса является наиболее перспективной, если не-
обходимо различить по спектрам КР эти масла.

ЗАКЛЮЧЕНИЕ

В ходе исследования спектров КР серии рас-
тительных масел, содержащих конъюгированные 
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Рис. 4. Спектры КР изучаемых растительных масел и БАД Омега‑5 в областях (а) 2650–3200 см–1 и (б) 2985–
3075 см–1. Синяя и красные кривые – спектры образцов, содержащих соответственно пуниковую и α-элеостеари-
новую кислоты, черные кривые – масла, в которых отсутствуют K-C18:3 ПНЖК.
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октадекатриеновые (K-C18:3) полиненасы-
щенные жирные кислоты (ПНЖК), мы при-
шли к выводу, что линии с  частотами около 
1164 и 1630 см–1, относящиеся соответственно 
к КР-активным валентным колебаниям С–С- 
и С=С-связей в –С=С–С=С–С=С–-фрагменте 
молекулярной цепи, являются маркерами при-
сутствия таких кислот в масле. Эти линии име-
ют заметную интенсивность и могут маскировать 
другие спектральные линии даже в случае малого 
содержания (около 8 масс. %) K-C18:3 ПНЖК. От-
ношения интенсивностей линий с частотами около 
1164 и 1630 см–1 к интенсивности линии с частотой 
около 1440 см–1 могут быть использованы для оцен-
ки содержаний K-C18:3 ПНЖК в масле.

Положение линии, имеющей максимум 
в  диапазоне 1253–1265  см–1 и  соответствую-
щей деформационному колебанию С–Н-связей 
в цис-конфигурациях С=С-связей, зависит от от-
носительных содержаний в масле молекул с со-
пряженными и несопряженными С=С-связями. 
При увеличении числа молекул с C=C-связя-
ми положение максимума этой линии сдвига-
ется в сторону больших частот. В случае высо-
кого содержания (> 60 масс. %) K-C18:3 ПНЖК 
в растительных маслах в спектрах в дополнение 
к линии 3012 см–1 появляется рассеяние света 
на частотах 2998 см–1 – для α-элеостеариновой 
кислоты и 3002 см–1 – для пуниковой кислоты. 
Эти дополнительные линии могут быть исполь-
зованы для различения этих двух изомеров.

Полученные результаты могут быть использо-
ваны для развития эффективных и неразрушаю-
щих методов анализа состава и качества масел, 
содержащих конъюгированные октадекатрие-
новые полиненасыщенные жирные кислоты, 
и биологических добавок на их основе.
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It is shown for the first time that using the method of Raman spectroscopy allows one to determine the 
content of conjugated octadecatrienoic (K-C18:3) acids in oil at their content of 8 wt. % at least. It is found 
that it is possible to reliably distinguish the isomers of the K-C18:3 acids containing conjugated (in punicic 
and α-eleostearic acids) and non-conjugated (in α-linolenic acid) C=C bonds by their Raman spectra. 
The obtained results can be used to develop efficient and non-destructive techniques for analyzing the 
composition and quality of oils, which contain conjugated octadecatrienic polyunsaturated fatty acids, and 
dietary supplements based on them.
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