RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

An elastic strip with a crack: an exact solution

PII
10.31857/S2686740024050089-1
DOI
10.31857/S2686740024050089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
51-56
Abstract
A method of solving the problem for an infinite elastic strip with a transverse crack located on the vertical axis of symmetry is proposed. The solution is sought in the form of series in Papkovich–Fadle eigenfunctions, the coefficients of which are determined explicitly. The solution method does not depend on the type of homogeneous boundary conditions on the sides of the strip. To solve the problem, a function is constructed from the Papkovich–Fadle eigenfunctions that allows an analytical continuation outside the crack into the entire strip. The analytic continuation is constructed using the Borel transform. The solution sequence is shown using the example of an even-symmetric problem for a free strip with a central crack, on the sides of which normal stresses are specified.
Keywords
упругая полоса трещина преобразование Бореля собственные функции Папковича–Фадля соотношение ортогональности Папковича точные решения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Гольдштейн Р.В., Рысков И.Н., Салганик Р.Л. Центральная поперечная трещина в упругой полосе // Изв. АН СССР. МТТ. 1969. № 4. С. 97–104.
  2. 2. Civelek M.B., Erdogan F. Crack problems for a rectangular plate and an infinite strip // Int. J. Fract. 1982. V. 19. P. 139–159.
  3. 3. Antipov Y.A., Schiavone P. Integro-differential equation for a finite crack in a strip with surface effects // Quart. J. Mech. Appl. Math. 2011. V. 64. № 1. P. 87–106.
  4. 4. Reut V., Vaysfeld N., Zhuravlova Z. Investigation of the stress state of the elastic semi-strip with a transverse crack // Theor. Appl. Fract. Mech. 2019. V. 100. P. 105–109.
  5. 5. Коваленко М.Д., Шуляковская Т.Д. Разложения по функциям Фадля–Папковича в полосе. Основы теории // Изв. РАН. МТТ. 2011. № 5. С. 78–98.
  6. 6. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965. 407 с.
  7. 7. Левин Б.Я. Распределение корней целых функций. М.: ГИТТЛ, 1956. 632 с.
  8. 8. Винер Н., Пэли Р. Преобразование Фурье в комплексной области. М.: Наука, 1964. 268 с.
  9. 9. Гахов Ф.Д. Краевые задачи. М.: Наука, 1977. 640 с.
  10. 10. Папкович П.Ф. Об одной форме решения плоской задачи теории упругости для прямоугольной полосы // ДАН СССР. 1940. Т. 27. № 4. С. 335–339.
  11. 11. Гринберг Г.А. О методе, предложенном П.Ф. Папковичем для решения плоской задачи теории упругости для прямоугольной области и задачи изгиба прямоугольной тонкой плиты с двумя закрепленными кромками, и о некоторых его обобщениях // ПММ. 1953. Т. 17. № 2. С. 211–228.
  12. 12. Прокопов В.К. О соотношении обобщенной ортогональности П.Ф. Папковича для прямоугольной пластинки // ПММ. 1964. Т. 28. № 2. С. 351–355.
  13. 13. Little R.W., Childs S.B. Elastostatic boundary region problem in solid cylinders // Quart. Appl. Math. 1967. V. 25. № 3. P. 261–274.
  14. 14. Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. М.: Наука, 1989. 480 с.
  15. 15. Лебедев Н.Н. Специальные функции и их приложения. М.–Л.: ГИФМЛ, 1963. 359 с.
  16. 16. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. М.: Наука, 1974. 296 с.
  17. 17. Matrosov A.V., Kovalenko M.D., Menshova I.V., Kerzhaev A.P. Method of initial functions and integral Fourier transform in some problems of the theory of elasticity // Z. Angew. Math. Phys. 2020. V. 71. № 1. Art. 24. 19 p.
  18. 18. Kovalenko M.D., Menshova I.V., Kerzhaev A.P., Yu G. Exact solutions of the theory of elasticity for a clamped rectangle // Math. Mech. Solids. 2022. V. 27. № 12. P. 2551–2566.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library