RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Underwater pipeline lifting by concentrated force

PII
10.31857/S2686740024040108-1
DOI
10.31857/S2686740024040108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
65-70
Abstract
We consider a static linear bending of a pipeline when it is lifted by a concentrated force. The weights of the pipe, the transported medium and the lifting force of the water are taken into account. It is assumed that the length of the raised section of the pipeline is greater than the depth of the reservoir. A parametric analysis of the influence of the weight and rigidity characteristics of the pipeline on the required lifting force is given.
Keywords
трубопровод подъем сосредоточенная сила длина поднятого участка
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Palmer A.C., King R.A. Subsea Pipeline Engineering. Oklahoma: PWC, 2004. 570 p.
  2. 2. Peek R., Yun H. Flotation to trigger lateral buckles in pipelines on a flat seabed // J. Engineering Mechanics. 2007. V. 4. P. 442–451. https://doi.org/10.1061/ (ASCE)0733-9399(2007)133:4(442)
  3. 3. Chee J., Walker A., White D. Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation // Ocean Engineering. 2018. V. 151. P. 170 – 190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  4. 4. Wang Z., Tang Y. Study on symmetric buckling mode triggered by dual distributed buoyancy sections for subsea pipelines // Ocean Engineering. 2020. V. 216. P. 105–110. https://doi.org/10.1016/j.oceaneng.2020.108019
  5. 5. Зарипов Р.М., Масалимов Р.Б. Использование компенсаторов в подводном участке морского газопровода для предотвращения его всплытия // Известия Томского политехн. ун-та. Инжиниринг георесурсов. 2023. Т. 334. № 2. С. 196–205. https://doi.org/10.18799/24131830/2023/2/3761
  6. 6. Утяшев И.М., Шакирьянов М.М. Пространственные колебания трубопровода с вибрирующими опорами // Изв. РАН. МТТ. 2023. № 4. С. 38–52. https://doi.org/10.31857/S057232992260058X
  7. 7. Li S.J., Karney B.W., Liu G. FSI research in pipeline systems – A review of the literature // J. Fluids and Structures. 2015. V. 57. P. 277–297. https://doi.org/10.1016/j.jfluidstructs.2015.06.020
  8. 8. Ильгамов М.А., Якупов Р.Г. Сильный изгиб трубопровода // Изв. РАН. МТТ. 2003. № 6. С. 109−116.
  9. 9. Елисеев В.В., Зиновьева Т.В. Нелинейно-упругая деформация подводного трубопровода в процессе укладки // Вычисл. мех. сплош. сред. 2012. № 1. С. 70−78. https://doi.org/10.7242/1999-6691/2012.5.1.9
  10. 10. Ильгамов М.А. Модель всплытия подводного трубопровода // ДАН. Физика, Технические науки. 2022. Т. 504. С. 12–16. https://doi.org/10.31857/S2686740022030087
  11. 11. Ильгамов М.А. Всплытие подводного газового трубопровода // Изв. РАН. МТТ. 2023. № 2. С. 147–159. https://doi.org/10.31857/S0572329922600487
  12. 12. Timoshenko S.P., Woinowsky-Krieger S. Theory of Plates and Shells. 2nd ed. N.Y.: McGraw-Hill. 1959. 591 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library