Президиум РАНДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Удаление сингулярности поля напряжений для задачи Вилльямса (1952) на основе неевклидовой модели сплошной среды

Код статьи
10.31857/S2686740024040037-1
DOI
10.31857/S2686740024040037
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 517 / Номер выпуска 1
Страницы
12-17
Аннотация
Рассматривается сингулярное решение для поля упругих напряжений в задаче Вилльямса о равновесии пластин с угловыми вырезами. Построена схема минимального расширения классической модели упругой сплошной среды на пути отказа от условия совместности Сен-Венана для деформаций, что приводит к неевклидовой модели сплошной среды. В рамках этой модели показано, что поле полных напряжений не содержит сингулярности для всех углов выреза.
Ключевые слова
сингулярные поля напряжений функция напряжений Эйри асимптотический метод Вилльямса неевклидова модель
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Williams M.L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension // J. Applied Mechanics. 1952. V. 19 (4). P. 526–528. https://authors.library.caltech.edu/records/2zph7-ee089
  2. 2. Barber J.R. Wedge Problems. In Elasticity. Part of the book series: Solid Mechanics and Its Applications. V. 172. Dordrecht: Springer, 2010. P. 149–170. https://doi.org/10.1007/978-90-481-3809-8_11
  3. 3. Pan W., Cheng C., Wang F., Hu Z., Li J. Determination of singular and higher order non-singular stress for angularly heterogeneous material notch 292 // Engineering Fracture Mechanics. 2023. 109592. https://doi.org/10.1016/j.engfracmech.2023.109592
  4. 4. Sinclair G.B. Stress Singularities in Classical Elasticity—I: Removal, Interpretation and Analysis // Applied Mechanics Reviews. 2004. V. 57(4). P. 251–297. http://dx.doi.org/10.1115/1.1762503
  5. 5. Мясников В.П., Гузев М.А. Геометрическая модель внутренних самоуравновешенных напряжений в твердых телах // ДАН. 2001. Т. 380. № 5. С. 627-629.
  6. 6. Годунов С.К., Роменский Е. И. Элементы механики сплошных сред и законы сохранения. Новосибирск: Научная книга, ١٩٩٨. 280 c.
  7. 7. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005. 584 с.
  8. 8. Гузев М.А. Структура кинематического и силового поля в Римановой модели сплошной среды // ПМТФ. 2011. Т. 52. № 5. С. 39–48.
  9. 9. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека