RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

Third-order optical bandpass filters based on structures of alternating layers of quartz and silver

PII
10.31857/S2686740024030119-1
DOI
10.31857/S2686740024030119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 516 / Issue number 1
Pages
73-80
Abstract
Designs of optical bandpass filters have been developed on planar structures, which were obtained by vacuum deposition onto quartz glass (SiO2) substrates of three layers also of quartz, which are half-wavelength resonators separated from each other, from free space, and from the substrate by four layers of silver (Ag). The thicknesses of the Ag and SiO2 layers were determined based on the given parameters of the filter passband by parametric synthesis of one-dimensional models using electrodynamic analysis. In this case, experimental frequency dependences of the real and imaginary parts of the permittivity of silver were used. The measured frequency responses of the manufactured prototypes of red, green and purple filters are in good agreement with the responses obtained during synthesis.
Keywords
слоистая структура металл-диэлектрик полосно-пропускающий фильтр комплексная диэлектрическая проницаемость
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Macleod H.A. Thin-Film Optical Filters. Boca Raton: CRC Press, 2010. 772 p.
  2. 2. Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. Полосно-пропускающие фильтры на одномерных фотонно-кристаллических структурах // ДАН. 2014. Т. 454. № 6. С. 651–656. https://doi.org/10.7868/S0869565214060097
  3. 3. Li J. // Optics Commun. 2010. V. 283. P. 2647–2650. http://dx.doi.org/10.1016/j.optcom.2010.02.046
  4. 4. Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. // ДАН. 2014. Т. 456. № 4. С. 413–416. https://doi.org/10.7868/S0869565214160105
  5. 5. Belyaev B.A., Tyurnev V.V., Shabanov V.F. // Optics Letters. 2014. V. 39. No 12. P. 3512–3515. http://dx.doi.org/10.1364/OL.39.003512
  6. 6. Беляев Б.А., Лексиков Ан.А, Тюрнев В.В., Шабанов Д.А. Исследование композита: металлические наночастицы в диэлектрической матрице и многослойных полосно-пропускающих фильтров на его основе // ДАН. 2021. Т. 497. С. 5–11. https://doi.org/10.31857/S2686740021020024
  7. 7. Li Z., Butun S., Aydin K. // ACS Photonics. 2015. V. 2. P. 183–189. http://dx.doi.org/10.1021/ph500410u
  8. 8. Jen Y.J., Lin M.J. Coatings. 2018. No. 8. V. 231. P. 1–8. http://dx.doi.org/10.3390/coatings8070231
  9. 9. Shen W., Sun X., Zhang Y., Luo Z., Liu X., Gu P. // Optics Communications. 2009. V. 282. P. 242–246. https://doi.org/10.1016/j.optcom.2008.09.080
  10. 10. Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ-устройств. М.: Радио и связь, 1987. 432 с.
  11. 11. Babar S., Weaver J.H. // Appl. Opt. 2015. V. 54. No 3. P. 477–481. http://dx.doi.org/10.1364/AO.54.000477
  12. 12. Belyaev B.A., Tyurnev V.V. Ural Radio Engineering Journal. 2023. V. 7. No 4. P. 457–469. https://doi.org/10.15826/urej.2023.7.4.006
  13. 13. Borah R., Ninakanti R., Bals S., Verbruggen S.W. Scientific Reports. 2022. No. 12. V. 15738. P. 1–19. https://doi.org/10.1038/s41598-022-20117-7
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library