- PII
- 10.31857/S2686740024020137-1
- DOI
- 10.31857/S2686740024020137
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 515 / Issue number 1
- Pages
- 85-90
- Abstract
- Analytically and within the framework of numerical simulations, remote sensing of the water-like bottom in shallow water based on low-frequency sound propagation loss is considered. Water-like bottom sediments are understood as sediments in which the sound speed is close to the sound speed in water, but having a significantly higher density. A model statistical analysis of depth-averaged transmission loss is carried out for acoustic tracks of a fixed range in one of the areas of the Kara Sea with a known structure of the upper layer of the bottom, which includes water-like areas. A good correlation between low-frequency transmission loss and the length of water-like bottom is demonstrated. Based on this result, a method for remote integral estimation of the water-like bottom size at an acoustic track between a single source and a vertical array of hydrophones is proposed.
- Keywords
- потери при распространении звука арктический шельф водоподобные донные осадки дистанционное зондирование вертикальная цепочка гидрофонов
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Григорьев В.А., Петников В.Г., Росляков А.Г., Терёхина Я.Е. Распространение звука в мелком море с неоднородным газонасыщенным дном // Акуст. журн. 2018. Т. 64. № 3. С. 342–358.
- 2. Lunkov A., Sidorov D., Petnikov V. Horizontal Refraction of Acoustic Waves in Shallow-Water Waveguides Due to an Inhomogeneous Bottom Structure // J. Mar. Sci. Eng. 2021. V. 9. P. 1269.
- 3. Collins M.D. A split-step Padé solution for the parabolic equation method // J. Acoust. Soc. Am. 1993. V. 93. P. 1736–1742.
- 4. Луньков А.А., Петников В.Г. Использование вертикальной приемной антенны для геоакустической инверсии в мелководном волноводе с ледовым покровом // Доклады РАН. Физика, технические науки. 2022. Т. 505. № 1. С. 78–82.
- 5. Burr I.W. Cumulative Frequency Functions // Ann. Math. Statist. 1942. V. 13. No. 2. P. 215–232.