RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

GENERATION OF RECTANGULAR NANOSECOND ELECTROMAGNETIC PULSES WITH A PICOSECONDS RISE FRONT

PII
10.31857/S2686740023060159-1
DOI
10.31857/S2686740023060159
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
29-33
Abstract
A method for generation of ultra-wideband electromagnetic pulses with a nanosecond duration and a picosecond rise time has been studied. The emitter is a horn antenna with a photoconductive switch irradiated by laser pulses. It has been shown that the duration of ultra-wideband electromagnetic pulses is determined by the length of the antenna and the semiconductor material, and the rising front is determined by the front of the laser pulses used to initiate the photoconductive switch. The work shows typical pulse durations of ~1 ns with a rising edge of up to ~34 ps.
Keywords
сверхширокополосное излучение рупорная антенна фотопроводящий ключ пикосек-ундные лазерные импульсы
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Yalandin M.I., Luybutin S.K., Rukin S.N. et al. Formation of nano- and subnanosecond width high-PRF powerful voltage pulses by using a hybrid modulator schemes // Proc. of 13th Intern. Symp. on High Current Electronics – Tomsk, Russia. 25–29 July 2004. P. 153.
  2. 2. Koshelev V.I., Gubanov V.P., Efremov A.M. et al. High-Power ultrawideband radiation source with multielement array antenna // Proc. of 13th Intern. Symp. on High Current Electronics – Tomsk, Russia. 25–29 July 2004. P. 258.
  3. 3. Efanov V.M. Gigawatt all solid state nano- and picosecond pulse generators for radar applications // Proc. on 14th IEEE Int. Pulsed Power Conf. Dallas, TX. June 2003. P. 100.
  4. 4. Prather W.D., Baum C.E., Torres R.J. et al. Survey of worldwide high-power wideband capabilities // IEEE Trans. on Electromagnetic Compatibility. V. 46. No. 3. August 2004. P. 335–344.
  5. 5. Mesyats G.A., Rukin S.N., Shpak V.G., Yalandin M.I. Generation of high-power sub-nanosecond pulses // Ultra-Wideband, Short-Pulse Electromagnetics 4 / Ed. by E. Heyman, B. Mandelbaum, and J Shiloh. N.Y.: Plenum, 1999.
  6. 6. Efanov V.M, Fedorov V.M., Grekhov I.V. et al. Multiunit UWB Radiator of Electro-Magnetic Waves with Controlled Directional Pattern // Proc. of 13th Intern. Symp. on High Current Electronics – Tomsk, Russia. 25–29 July 2004. P. 262.
  7. 7. Сахаров К.Ю. Излучатели сверхкоротких электромагнитных импульсов и методы измерений их параметров. М.: Московский гос. ин-т электроники и мат., 2006. 159 с.
  8. 8. Fedorov V.M., Efanov M.V., Ostashev V.Ye. et al. Antenna Array with TEM-Horn for Radiation of High-Power Ultra Short Electromagnetic Pulses // Electronics. 2021. V. 10. № 9. P. 1011. https://doi.org/10.3390/electronics10091011
  9. 9. Ефанов М.В., Лебедев Е.Ф., Ульянов А.В. и др. Излучательно-измерительный комплекс для исследования прохождения сверхширокополосных сигналов в атмосфере и ионосфере земли // Теплофиз. выс. темп. 2021. Т. 59. № 6. С. 877–884. https://doi.org/10.31857/S0040364421060028
  10. 10. Гарнов С.В., Селемир В.Д., Букин В.В., Долматов Т.В., Горбенко Д.А., Жданов В.С., Ефанов М.В., Лебедев Е.Ф., Осташев В.Е., Семенов В.А., Ульянов А.В., Федоро В.М., Шурупов М.А. Прямой эксперимент по прохождению сверхширокополосных импульсов субнаносекундной длительности в атмосфере Земли // Доклады РАН. Физика, технические науки. 2023. Т. 509. № 1. С. 9–14. https://doi.org/10.31857/S2686740023020062
  11. 11. Кондратьев А.А. Угловое и спектральное распределение сверхширокополосного излучения фотоэмиссионного источника // Журн. техн. физики. 2018. Т. 88. № 3 С. 434–437. https://doi.org/10.1134/S1063784218030106
  12. 12. Пат. US20160197215A1BAE, US14/588,467. Generation of Flexible High Power Pulsed Waveforms / Alexander Kozyrev, John McGeehan, Yannick Morel; заявитель и патентообладатель Systems Information and Electronic Systems Integration Inc; опубл. 02.01.2015.
  13. 13. Němec H., Kadlec F., Kužel P. Methodology of an optical pump-terahertz probe experiment: An analytical frequency-domain approach //The Journal of chemical physics. – 2002. T. 117. № 18. C. 8454–8466.
  14. 14. Ropagnol X. et al. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas // IEEE Photonics Journal. 2011. V. 3. № 2. P. 174–186.
  15. 15. You D. et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses // Optics letters. 1993. V. 18. № 4. P. 290–292.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library