RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

SYNTHESIS OF COMPOSITES DIAMOND-SiO2 WITH PHOTON CRYSTAL PROPERTIES IN THE VISIBLE

PII
10.31857/S2686740023050127-1
DOI
10.31857/S2686740023050127
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
36-39
Abstract
We report on synthesis of periodical structures by chemical vapor deposition in form of a composite “single crystal diamond – SiO2 nanospheres” which shows photon crystal properties in the visible.
Keywords
фотонный кристалл алмаз опал химическое осаждение из газовой фазы композит спектр отражения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Evans R.E., Bhaskar M.K., Sukachev D.D., et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity // Science. 2018. V. 362. № 6415. P. 662–665. https://doi.org/10.1126/science.aau4691
  2. 2. Kuruma K., Pingault B., Chia C., et al. Coupling of a single tin-vacancy to a photonic crystal cavity in diamond // Appl. Phys. Lett. 2021. V. 118. № 23. P. 230601: 1–6. https://doi.org/10.1063/5.0051675
  3. 3. Wan N.H., Mouradian S., and Englund D. Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond // Appl. Phys. Lett. 2018. V. 112. № 14. P. 141102: 1–4. https://doi.org/10.1063/1.5021349
  4. 4. Zakhidov A.A., Baughman R.H., Iqbal Z., et al. Carbon structures with three-dimensional periodicity at optical wavelengths // Science. 1998. V. 282. № 5390. P. 897–901. https://doi.org/10.1126/science.282.5390.897
  5. 5. Ральченко В.Г., Совык Д.Н., Большаков А.П. и др. Получение прямых и обратных опаловых матриц из алмаза методом осаждения из газовой фазы // Физика твердого тела. 2011. Т. 53. № 6. С. 1069–1071. https://doi.org/10.1134/S106378341106028X
  6. 6. Kurdyukov D.A., Feoktistov N.A., Nashchekin A.V. et al. Ordered porous diamond films fabricated by colloidal crystal templating // Nanotechnology. 2012. V. 23. № 1. P. 015601:1–8. https://doi.org/10.1088/0957-4484/23/1/015601
  7. 7. Dai B., Shu G., Ralchenko V. et al. 2D inverse periodic opal structures in single crystal diamond with incorporated silicon-vacancy color centers // Diam. Relat. Mater. 2017. V. 73. P. 204–209. https://doi.org/10.1016/j.diamond.2016.09.022
  8. 8. Масалов В.М., Сухинина Н.С., Емельченко Г.А. Коллоидные частицы диоксида кремния для формирования опалоподобных структур // Физика твердого тела. 2011. Т. 53. № 6. С. 1072–1076. https://doi.org/10.1134/S1063783411060229
  9. 9. Lange B., Fleischhaker F., Zentel R. Functional 3D photonic films from polymer beads // Physica Status Solidi (a). 2007. V. 204. № 11. P. 3618–3635. https://doi.org/10.1002/pssa.200776401
  10. 10. Bolshakov A.P., Ralchenko V.G., Shu G., et al. Single crystal diamond growth by MPCVD at subatmospheric pressures // Materials Today Communications. 2020. V. 25. P. 101635: 1–10. https://doi.org/10.1016/j.mtcomm.2020.101635
  11. 11. Tikhodeev S.G., Yablonskii A.L., Muljarov E.A., Gippius N.A., Ishihara T. Quasiguided modes and optical properties of photonic crystal slabs // Phys. Rev. B. V. 66. № 4. P. 045102: 1–17. https://doi.org/10.1103/PhysRevB.66.045102
  12. 12. Dyakov S.A., Gippius N.A., Voronov M.M., et al. Quasiguided modes of opaline photonic crystals covered by Ge2Sb2Te5 // Phys. Rev. B. 2017. V. 96. P. 045426: 1–7. 10.1103/PhysRevB.96.045426
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library