Президиум РАНДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

КРИСТАЛЛОГРАФИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В ОБЛАСТИ СОЕДИНЕНИЯ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ, ПОЛУЧЕННОГО РОТАЦИОННОЙ СВАРКОЙ ТРЕНИЕМ

Код статьи
10.31857/S2686740023040132-1
DOI
10.31857/S2686740023040132
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 511 / Номер выпуска 1
Страницы
83-86
Аннотация
Методами ориентационной (EBSD) и просвечивающей электронной микроскопии исследованы структура и ориентационные соотношения α' и γ-фаз в среднеуглеродистых сталях при ротационной сварке трением. Показано, что в результате фазовой перекристаллизации в структуре сварного шва образуется мартенсит с прослойками γ-фазы. По виду спектра угловых отклонений межфазных границ установлено образование вторичного (ревертированного) аустенита. Показано, что между кристаллами α- и γ-фаз в этом случае реализуется ориентационное соотношение, близкое к Бейновскому.
Ключевые слова
ротационная сварка трением аустенит мартенсит ориентационные соотношения
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
14

Библиография

  1. 1. Виль В.И. Сварка металлов трением. М.: Машиностроение, 1970. 176 с.
  2. 2. Li W.Y., Vairis A., PreussM., Ma T.J. Linear and rotary friction welding review // Int. Mater. 2016. Rev. 61. P. 71–100.
  3. 3. Shete N., Deokar S.U. A review, paper on rotary friction welding, Int. Conf. on Ideas // Impact and Innovation in Mechanical Engineering. (ICIIIME). 2017. V. 5. P. 1557–1560.
  4. 4. Табатчикова Т.И. Фазовые и структурные превращения при лазерном нагреве стали / В сб. Развитие идей академика В.Д. Садовского. Екатеринбург: ИФМ УрО РАН, 2008. С. 123–143.
  5. 5. Amborish Banerjee, Michail Ntovas, Laurie Da Silva, Salaheddin Rahimi, Bradley Wynne. Inter‑relationship between microstructure evolution and mechanical properties in inertia friction welded 8630 low‑alloy steel // Archives of Civil and Mechanical Engineering. 2021. https://doi.org/10.1007/s43452-021-00300-9
  6. 6. Ray R., Jonas J.J. Transformations textures in steels // Int. Materials Rev. 1990. V. 35. P. 1–36.
  7. 7. Гундырев В.М., Зельдович В.И., Счастливцев В.М. Кристаллографический анализ мартенситного превращения в среднеуглеродистой стали с пакетным мартенситом // ФММ. 2016. Т. 117. № 10. С. 1052–1062.
  8. 8. Лобанов М.Л., Пастухов В.И., Редикульцев А.А. Влияние специальных границ на γ → α-превращение в аустенитной нержавеющей стали // ФММ. 2021. Т. 122. № 4. С. 424–430. https://doi.org/10.31857/S0015323021040057
  9. 9. Yang X., Xu Y., Yan X., Wu D. Influences of crystallography and delamination on anisotropy of Charpy impact toughness in API X100 pipeline steel // Mater. Sci. and Eng. A. 2017. V. 607. № 23. P. 53–62.
  10. 10. Эндрюс К., Дайсон Д., Киоун С. Электронограммы и их интерпретация. М.: Мир, 1971. 256 с.
  11. 11. Приймак Е.Ю., Лобанов М.Л., Беликов С.В., Карабаналов М.С., Яковлева И.Л. Закономерности формирования структуры и кристаллографической текстуры в сварных соединениях среднеуглеродистых легированных сталей в процессе ротационной сварки трением // Физика металлов и металловедение. 2022. Т. 123. № 6. С. 596–603. https://doi.org/10.31857/S0015323022060122
  12. 12. Штремель М.А., Андреев Ю.Г., Козлов Д.А. Строение и прочность пакетного мартенсита // Металловедение и термическая обработка металлов. 1999. № 4. С. 10–15.
  13. 13. Счастливцев В.М., Калетина Ю.В., Фокина Е.А. Остаточный аустенит в легированных сталях. Екатеринбург: РИО УрО РАН, 2014. 236 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека