RAS PresidiumДоклады Российской академии наук. Физика, технические науки Doklady Physics

  • ISSN (Print) 2686-7400
  • ISSN (Online) 3034-5081

PHOTOSENSITIVITY OF PbS COLLOIDAL QUANTUM DOTS BASED NANOSTRUCTURES WITH AN ENERGY BARRIER

PII
10.31857/S2686740023040120-1
DOI
10.31857/S2686740023040120
Publication type
Status
Published
Authors
Volume/ Edition
Volume 511 / Issue number 1
Pages
78-82
Abstract
A new architecture of photosensitive elements for the near (0.7–1.4 μm) and short-wavelength (1.4–3.0 μm) infrared regions of the spectrum based on hybrid nanostructures consisting of PbS colloidal quantum dots and functional layers of ZnO and AgNW silver nanowires is proposed. Small-sized (12 × 12 μm) photosensitive elements with an energy barrier at the contact between layers of n- and p-type CQDs have been studied. The current-voltage characteristics, spectral dependences of optical absorption and relative spectral photosensitivity of Si(λ)/Simax) barrier structures at room temperature have been studied. It is shown that the proposed architecture of barrier structures provides photosensitivity in a wide spectral range from 0.4 µm to 2.0 µm. An excess of the average value of the relative spectral sensitivity Si(λ)/Simax) about 1.5 times compared to those previously observed in the wavelength range of 0.9–1.85 μm for barrier nanostructures from PbS CQDs was found.
Keywords
квантовая точка оптическое поглощение фотосенсор энергетический барьер
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Zandian M., Farris M., McLevige W. et al. Performance of Science Grade HgCdTe H4RG-15 Image Sensors // Proc. of SPIE. 2016. 9915, 99150F1. https://doi.org/10.1117/12.2233664
  2. 2. Zhang J.-X., Wang W., Li Z.-B.et al. Development of a High Performance 1280 × 1024 InGaAs SWIR FPA Detector at Room Temperature // Front Phys. 2021. V. 9. 678192. https://doi.org/10.3389/fphy.2021.678192
  3. 3. Thom R. High density infrared detector arrays // Patent US 4039833. 1977.
  4. 4. Шуклов И.А., Разумов В.Ф. Коллоидные квантовые точки халькогенидов свинца для фотоэлектрических устройств // Успехи химии. 2020. Т. 89. № 3. С. 379–391. https://doi.org/10.1070/RCR4917
  5. 5. Gregory C., Hilton A., Violette K. et al. Colloidal quantum dot sensor bandwidth and thermal stability: progress and outlook // Proc. of SPIE. 2022. 12107, 1210705. https://doi.org/10.1117/12.2618320
  6. 6. Yuan Y., Xu J.-L., Zhang J.-Y. et al. Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes // IEEE Electron Device Letters. 2022.V. 43. P. 1275–1278. https://doi.org/10.1109/LED.2022.3183602
  7. 7. Pejovic V., Georgitzikis E., Lee J. et al. Infrared Colloidal Quantum Dot Image Sensors // IEEE Transactions on Electron Device. 2021. V. 69. P. 2840–2850. https://doi.org/10.1109/TED.2021.3133191
  8. 8. Попов В.С., Пономаренко В.П., Попов С.В. Фото- и наноэлектроника на основе двумерных 2D-материалов (обзор). Ч. III. Фотосенсоры на основе графена, графеноподобных и родственных моноатомных 2D-наноматериалов // Успехи прикладной физики. 2022. Т. 10. № 2. С. 144–169. https://doi.org/10.51368/2307-4469-2022-10-2-144-169
  9. 9. Пономаренко В.П., Попов В.С., Попов С.В. Фотоэлектроника на основе квазинульмерных структур (обзор) // Успехи прикладной физики. 2021. Т. 9. № 1. С. 25–67. https://doi.org/10.51368/2307-4469-2021-9-1-25-67
  10. 10. Brittman S., Colbert A.E., Brintlinger T.H. et al. Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots // J. Phys. Chem. Lett. 2019. V. 10. P. 1914–1918. https://doi.org/10.1021/acs.jpclett.9b00786
  11. 11. Mayer R. Elemental Sulfur and its Reactions. Organic Chemistry of Sulfur / Ed. S. Oae. Springer-Verlag, 1977. P. 33–69.
  12. 12. Beek W.J.E., Wienk M.M., Kemerink M. et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells // J. Phys. Chem. B. 2005. V. 109. P. 9505–9516. https://doi.org/10.1021/jp050745x
  13. 13. Langley D., Giusti G., Mayousse C. et al. Flexible transparent conductive materials based on silver nanowire networks: a review // Nanotechnology. 2013. V. 24. 452001 (20 p.) https://doi.org/10.1088/0957-4484/24/45/452001
  14. 14. Kao K.C., Hwang W. (Electrical Transport in Solids. Oxford: Pergamon Press, 1981. 663 p.
  15. 15. Reich K.V. Conductivity of quantum dot arrays // Physics-Uspekhi. 2020. V. 63. P. 994–1084. https://doi.org/10.3367/UFNe.2019.08.038649
  16. 16. Klem E., Lewis J., Gregory C. et al. Room Temperature SWIR Sensing from Colloidal Quantum Dot Photodiode Arrays // Proc. of SPIE. 2013. 8704, 870436. https://doi.org/10.1117/12.2019521
  17. 17. Klem E.J.D., Lewis J., Gregory C. et al. Low Cost SWIR Sensors: Advancing the Performance of ROIC- Integrated Collodial Quantum Dot Photodiode Arrays // Proc. of SPIE. 2014. 9070, 907039. https://doi.org/10.1117/12.2054215
  18. 18. Klem E.J.D., Gregory C., Temple D. et al. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE. 2015. 9451, 945104. https://doi.org/10.1117/12.2178532
  19. 19. Hinds S., Klem E., Gregory C. et al. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers // Proc. of SPIE. 2020. 11407, 1140707. https://doi.org/10.1117/12.2559115
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library