- PII
- 10.31857/S2686740023030069-1
- DOI
- 10.31857/S2686740023030069
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 510 / Issue number 1
- Pages
- 35-38
- Abstract
- The article summarizes the results of the main research in the field of self-ignition theory. For symmetrical vessels, the following are presented: critical conditions of spontaneous ignition in dimensional coordinates, temperature distribution in the vessel, pre-explosive heating of fuel and the critical size of the vessel at the time of explosion. It is noted that the self-ignition conditions for different vessels differ only by a digital multiplier, which indicates that the shape of the vessel does not affect the physic-chemical processes going on in the fuel at the time of the explosion. Each singular point, being a bifurcation point, determines a number that allows finding a single critical condition of self–ignition from the set of solutions to the heat equation. This condition, in the coordinates of its variables, represents a multidimensional surface separating the zone of stationary existence of a combustible system from the zone of “no return”, where a combustible system cannot exist.
- Keywords
- теория и условия самовоспламенения точки бифуркации и невозврата
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. 2-е изд. пер. и доп. М.: Наука, 1967.
- 2. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980.
- 3. Гельфанд И.М. Задачи теории квазилинейных уравнений // УМН. 1959. Т. 154. № 4, параграф 15 (Баренблатт Г.И.). С. 787–790.
- 4. Фомичев А.В. Элементы теории бифуркации и динамических систем. М.: МФТИ, 2019. Ч. 1.
- 5. Арнольд В.И. Теория катастроф. М.: Наука, 1990.
- 6. Филиппов А.А., Берлин А.А. Математическая теория зажигания накаленной поверхностью // Доклады РАН. Физика, технические науки. 2022. Т. 503. С. 24–30.